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Abstract. In this work, we present a novel approach to mass detection in digital
mammograms. The great variability of the masses appearance is the main obstacle
of building a mass detection method. It is indeed demanding to characterize all
the varieties of masses with a reduced set of features. Hence, in our approach
we have chosen not to extract any feature, for the detection of the region of
interest; on the contrary, we exploit all the information available on the image.
A multiresolution overcomplete wavelet representation is performed, in order to
codify the image with redundancy of information. The vectors of the very-large
space obtained are then provided to a first SVM classifier. The detection task is
here considered as a two-class pattern recognition problem: crops are classified
as suspect or not, by using this SVM classifier. False candidates are eliminated
with a second cascaded SVM. To further reduce the number of false positives,
an ensemble of experts is applied: the final suspect regions are achieved by using
a voting strategy. The sensitivity of the presented system is nearly 80% with a
false-positive rate of 1.1 marks per image, estimated on images coming from the
USF DDSM database.

1. Introduction

Breast cancer remains a leading cause of cancer deaths among women in many
parts of the world. Mammography is considered the most reliable method for early
detection of breast cancer. However, it could be difficult for radiologists to detect
some lesions on mammograms. The missed detection may be due to the subtle
nature of the radiographic findings, poor image quality, eye fatigue, or oversight
by the radiologists. Clinical trials and retrospective studies (Burhenne et al 2000,
Birdwell et al 2001, Malich et al 2001) indicate that the detection rate can be increased
with Computer Aided Detection (CAD) systems, without any significant decrease of
specificity. Masses and clustered microcalcifications are the most common lesions
associated with the presence of breast carcinomas. The automatic detection of masses
can be hampered by the wide diversity of their shape, size and subtlety. As is known,
the tumoral masses present as thickenings, which appear on images as lesions with a
size ranging from 3 mm to 20−30 mm. These lesions can vary considerably in optical

§ Address for correspondence: Department of Physics, Viale Berti-Pichat 6/2, 40127 Bologna, Italy.
E-mail: nico.lanconelli@bo.infn.it



A novel featureless approach to mass detection based on SVM 2

density, shape, position, size and characteristics at the edge. In addition, the visual
manifestation in the mammogram of the shape and edge of a lesion does not only
depend upon the physical properties of the lesion, but is also affected by the image
acquisition technique and by the projection considered. A mass may appear round or
oval, according to the projection, because other normal architectural structures of the
breast could be superimposed on the lesion (in that perspective). From what has been
said, it is difficult to identify morphological, directional or structural quantitites that
can characterize the lesions sought at any scales and any modalitites of occurence.
Therefore, for a CAD system it is very demanding to detect lesions of various types.
The reason is that detection methods often rely on a feature extraction step: here, the
masses are isolated by means of a set of characteristics which describe the opacities.
Due to the great variety of the masses, it is extremely difficult to get a common set of
features effective for every kind of masses. For this reason, many of the algorithms for
detecting masses so far developed have concentrated on the detection of a particular
type of mass or on masses of a specific size. Furthermore, the algorithms up to now
used necessitated external information on the characteristics of the masses.

In this paper, we present a mass detection system which does not rely on any
feature extraction step. Considering the complexity of the class of objects to be
detected, considering that said objects frequently present characteristics that are
very similar to the environment which surround them, and considering the objective
difficulty of modeling this class of objects with few measurable quantities, in the
approach proposed herein no modeling has been used. On the contrary, the algorithm
automatically learns to detect the masses by the examples presented to it. In this way,
there is no a priori knowledge provided by the trainer: the only thing the system needs
is a set of positive examples (masses) and a set of negative examples (non-masses).
Basically, we consider mass detection as a two-class pattern recognition problem.
The detection scheme codifies the image with a wavelet overcomplete representation;
the great amount of information handled by the algorithm is classified by means
of a Support Vector Machine (SVM) classifier, a learning machine based on a well-
founded statistical theory (Vapnik 1995, Vapnik 1998). Given the ability of SVMs to
handle multidimensional spaces, at the same time maintaining a good generalization
capacity, the possibility of eliminating or limiting the feature extraction step for a
classification task has emerged. SVMs have already been applied to breast cancer
detection methods, giving rise to very good results. In a couple of cases the SVM
was used for reducing false-positive signals, in the detection of microcalcifications in
mammograms (Bazzani et al 2001), and in the diagnosis of breast ultrasonography
images (Chang et al 2003): in both cases SVM classified signals by means of extracted
image features. A featureless approach based on SVM for the detection of lesions in
mammograms has been investigated for the first time by our group (Campanini et
al 2002). In another study, an approach similar to ours was used, but the class of
object to be detected (microcalcifications) is much less heterogeneous in terms of
size, shape and contrast (El-Naqa et al 2002). The advantages of SVM over other
classifiers are that its setting is easier, it usually performs better on novel data and
it is able to compress the useful information of high-dimensional spaces into a small
number of elements named support vectors. SVMs are therefore capable of learning
in sparse, high-dimensional spaces, by using very few training examples. To improve
SVM performance, a bootstrap learning technique is performed (Efron and Tibshirani
1993). We validated the detection scheme with images coming from the USF DDSM
database (Heat et al 2000): images have a spatial resolution ranging from 43 to 50
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µm and 12 bit gray-level resolution.

2. Methods

2.1. Detection scheme

Our algorithm encodes all the regions of the image in the form of vectors, these
vectors being then classified as suspect or not by means of an SVM classifier. The
system is virtually able to detect lesions whatever position these may occupy and at
different scales in the input mammographic image; this is realized by scanning and
classifiying all the possible locations of the image with the passage of a window (crop).
By combining the scanning pass with an iterated resizing of the window, multiscale
detection is so achieved. Each crop classified as positive identifies an area judged as
suspect by the CAD system.

Figure 1 shows a chart of the CAD system presented in this paper. One of the
main problems encounterd in mass detection is that the lesions we are searching for
occur at different scales in the mammogram, typically in a range of dimensions from 3
mm to 20-30 mm. There thus emerges the problem of scanning the image at different
scales. On the other hand, our system needs a fixed size crop, since the SVM classifier
needs dimensionally homogeneous vectors. Consequently, the solution implemented is
that of using scanning masks of different dimensions and subsampling the crops of the
image extracted from that mask to a prefixed size of 64× 64 pixels. For example, let
us consider an input image of 4000 × 3000 pixels with a 50 µm pixel size and three
scale targets of 32 mm (640 pixels), 16 mm (320 pixels), and 10 mm (213 pixels). The
desired dimension (64 × 64 pixels) of the crop to which apply the wavelet transform
is obtained by subsampling, with a bilinear interpolation algorithm, the windows of
640× 640, 320× 320, and 213× 213 pixels to 10%, 20%, and 30%, respectively. The
analysis of the entire image is obtained by shifting the mask by a scanning step fixed to
approximately 10% of the linear dimensions of the mask. In this way, there is a certain
degree of superposition between contiguous squares. Without superposition, many
lesions could fail to be detected because they are not centered on the scanning crop.
This is consistent with the fact that during the training phase the positive examples
are shown as crops centered on a mass. The number of analyzed scales is strictly
related to the range size of the masses we are interested in. A multiresolution analysis
is then performed on each scaled crop, by transforming it with the Haar wavelet
basis function. To exploit all the information available in the image, a redundant
representation is obtained, by means of an overcomplete dictionary (Simoncelli et al
1992), as described in the next subsection. The number of coefficients so obtained is
extremely high; these data represent the horizontal, vertical and diagonal coefficients
of the considered levels in the multiresolution analysis. For each crop, the vector of
coefficients is used as input for the first SVM classifier: a more complete description
of SVMs is shown in a following subsection. Once trained, the SVM classifies each
crop: the classification in the detection step is based upon the model created, starting
from the set of examples presented during the training. For each crop, SVM gives the
distance from the separating hyperplane for positive (suspect) regions. This distance
is an index of confidence on the correctness of the classification: a vector classified
as positive with a large distance form the hyperplane will have a higher likelihood of
being a true positive as compared to a vector very close to the hyperplane, and hence
close to the boundary area between the edges of the two classes. Researches have
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Figure 1. Chart of the detection method.

been done, in order to extract a posterior probability from SVM outputs (Platt 1999).
The scanning of all possible locations at all analyzed scales provides a list of suspect
candidates, each candidate consisting of a crop with a distance from the hyperplane
greater than a prefixed threshold.

All the candidates are then passed to a second cascaded SVM classifier. The aim
of this second SVM is to eliminate the false candidates selected by the first classifier.
Some typical false signals are macrocalcifications or signals close to the pectoral muscle
border. Those candidates usually have a high distance from the hyperplane, hence they
survive the first SVM. However, by training a second cascaded classifier, it is possible
to remove those signals. The training set for this second SVM is composed of the
same positive examples (masses) used in the first training, augmented by the positive
patterns of the validation set, and by the false positive candidates obtained by the first
SVM. The task of the two classifiers are quite different. The first SVM must have a
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Figure 2. Suspect candidates selected by the first SVM: [a] and [c], and
the candidates survived after the second SVM classifier: [b] and [d]. Here, a
macrocalcification (pointed by an arrow in [a]) and some signals near the pectoral
muscle (pointed by an arrow in [c]) are eliminated by the second classifier.

very small error, since it has to discover true masses among an huge number of normal
regions (it analyzes about 100000 crops on each image). As a consequence, even with
a very small error (nearly 0.05%), it gives typically some dozens false candidates per
image. The second SVM could have a worse error, compared to the first one, since it
analyzes only about 50 candidates per image. However, almost all the candidates are
now similar to the true lesions. Nevertheless, unlike the initial classification problem,
now the classifier can focus for discarding only some particular classes of signals,
according to the category of false candidates given by the first SVM. That allows the
rejection of some typical false signals, as mentioned above. Figure 2 displays a couple
of examples of some false candidates eliminated by the second SVM classifier.

The last step of the detection scheme consists of the merging of the multiscale
information. The output of the second SVM classifier is a set of candidates detected at
either one of the scales. However, the same suspect region can be detected at several
scales. In this case, the centers of the various candidates, representing that region at
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Figure 3. Committee of three experts: the prompted image consists of any
overlapped suspect regions “voted” by at least two (of three) experts. Each expert
corresponds to a detection system as illustrated in Figure 1, with the merging of
multiscale information as described in the text.

different scales, may not be the same, since the scanning step at one particular scale
is diverse from the others. We fuse all the candidates within a specified neighborhood
into a single candidate. Therefore, the output of the detection method (named expert
in the following discussion) is a list of suspect regions, each one detected at least at
one scale.

To further reduce the number of false positives, we decided to apply multiple
experts, and combine their output to produce the final detection. Each expert is a
detector as illustrated in Figure 1. The basic idea is that an ensemble of experts
improves the overall performance of individual experts, if the individual experts are
independent, or negatively dependent, i.e. they commit mistakes on different objects
(Kuncheva et al 2000). Each expert differs from the others for the training sets and/or
for the kernel used in the SVM classifiers (see the subsection Support Vector Machines).
The detection performance of the different experts can be quite close. However,
because of the different kernels and because of the different training conditions, the
experts will often make different errors. Hence, one way to reduce false positives
could be to combine the output of the experts by ANDing them. Unfortunately, the
detection rate can decrease, because a suspect region missed by only one network will
be thrown out. Therefore, we chose a more “soft” combination heuristic, based on
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Figure 4. Difference between the standard wavelet shift, double and quadruple
density overcomplete transform.

a voting strategy. Basically, a region is considered suspect only if at least two (of
three) experts detect that region. For each suspect region discovered by each expert,
it is checked whether there is another candidate in a neighborhood surrounding that
location. Hence, the final prompted image consists of suspect lesions detected by at
least two experts, as illustrated in Figure 3.

2.2. Wavelet overcomplete

One of the most important issue in the development of an object detection system is
the representation of the object class. Wavelets offer a representation of the image
that is particularly suitable for highlighting structural, geometrical and directional
characteristics of the objects within the image. The wavelet coefficients encode
the differences in gray levels corresponding to different regions and in different
directions in the image; this encoding is performed at different scales. The idea is
to provide the classifier with a complete representation of the image, without guiding
the generalization of the class with assumptions deriving from our modeling of the
pattern. To this aim, we use an overcomplete dictionary of Haar wavelets. Haar
transform is preferred, because it is the simplest and fastest one to be calculated and
because it does not present problems of interpolation at the edge. The overcomplete
transform provides a redundant encoding of the data with spatially superposed scale
and wavelet basis functions. In this way, the information for each portion of the image
is distributed over a greater number of coefficients and a richer set of characteristics.
In the traditional wavelet transform, the base functions do not present any spatial
superposition (they are shifted by amounts corresponding to the extent of their
support). In an overcomplete scheme, according to the degree of superposition, there
could be more or less redundancy in the encoding. Expressing the translation as a
fraction of the support’s extent, we will have single, double or quadruple density,
according to whether the translation factor is equal to 1, 1

2 or 1
4 the extent of the

support, respectively (Figure 4). The wavelet tranform is calculated for each of the
crops produced by scanning at the various scales. In this way, for each level of
decomposition, three types of coefficients are obtained, namely horizontal, vertical,
and diagonal. If it is assumed that the levels 4 and 6 of double-density overcomplete
Haar wavelet transform are used, given an initial crop of 64 × 64 pixels, the total
number of coefficients is nearly 3000. Therefore, for each crop, the classifier takes as
input a 3000-dimensional vector. Before the classification step, this vector must be
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normalized, in order to ensure rapid convergence of the learning model and to balance
the weights of the various characteristics. The normalization coefficients are computed
during the training phase.

2.3. Support Vector Machines

In our approach, the detection of a lesion is treated as a two-class pattern recognition
problem: the goal is to classify a crop window as suspect region or not. The purpose of
a classification task is to find a rule, which assigns an object to one of the two classes.
SVMs construct a binary classifier from a set of l training examples, consisting of
labeled patterns (xi, yi) ∈ RN → ±1, i = 1, . . . , l. The classifier aims to estimate
a function f : RN → ±1, from a given class of functions, such that f will correctly
classify unseen test examples (x, y). An example is assigned to the class +1 if f(x) ≥ 0
and to the class −1 otherwise. The test examples are assumed to be generated from
the same unknown probability distribution as the training data. If no restriction is
placed on the class of functions when chosing the estimate f , it could happen that even
a function that performs well with training data may not generalize well to unseen
examples. Thus, just the minimisation of the training error (empirical risk) does
not imply itself a good generalisation on test examples (expected risk). In order to
get good generalization performance, it is necessary to restrict the class of functions,
so that f is chosen from a class with a capacity that is suitable for the amount of
available training data, as determined by Statistical Learning Theory (Vapnik 1995).
This theory gives bounds for the test error; the minimization of these bounds depends
on both the empirical risk and the capacity of the function class, as illustrated in
the left side of Figure 5. One way to avoid the overfitting problem is to restrict the
complexity of the chosen function class. The SVM selects hyperplanes as the class of
separating functions. The optimal hyperplane is the one which maximizes the margin
of the nearest examples; this is equivalent to minimizing the complexity function
bound. Among all the separating hyperplanes, SVM finds the one that causes the
largest separation between the decision function values for the borderline examples
from the two classes. The Maximal Margin Hyperplane (MMH) is computed as a
decision surface of the form:

f(x) = sgn

(
l∑
i=1

yiαi(x · xi) + b

)
(1)

where the coefficients αi and b are calculated by solving the following quadratic
programming problem:

maximize
l∑
i=1

αi − 1
2

l∑
i,j−=1

αiαj(xi · xj)yiyj

with
l∑
i=1

αiyi = 0 0 ≤ αi ≤ C.

(2)

C is a regularization parameter selected by the user; it determines the tradeoff between
the empirical error and the complexity term. Therefore, the classification of a pattern
x is achieved according to the values of f(x) in (1).

It is worth mentioning that in a typical classification problem the hyperplane (1)
is determined by only a small fraction of training examples. These vectors, named
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Figure 5. Left: General trend of expected risk (solid line), empirical risk (dotted
line) and confidence term (dashed line). Empirical risk is related to the training
error, whilst expected risk gives a measure of the generalization on test examples.
The confindence term represents the upper bound on the complexity of the class
function: with higher complexity the empirical error decreases, but the upper
bound on the risk confidence becomes worse. In practice, the goal is to find the
best tradeoff between empirical error and complexity. Right: SVM classification
with the MMH that maximizes the separating margin ∆ between the two classes
(squares and circles). In the separable case, the support vectors are elements of
the training set that lie on the boundary hyperplanes of the two classes.

support vectors, are those with a distance from the MMH equal to half the margin
(Figure 5− right). In the more general case in which the data are not linearly separable
in the input space, a non linear transformation is used to map the input vectors into
a high-dimensional space. In this space, the MMH will be determined as mentioned
above. The kernel function guides the non-linear mapping: admissible and typical
functions are the polynomial and the Gaussian kernels. In our work, we utilized both
an usual 2nd degree polynomial and a sparse polynomial kernel (Schölkopf et al 1998).
By using a common polynomial kernel k(x,y) = (x · y)d, one implicitly constructs a
decision boundary in the space of all possible products of d pixels. This may not be
desirable, since in natural images, correlations over short distances are much more
reliable as features than long-range correlations are. The general form of the sparse
polynomial is the following :

k(x,y) =

 ∑
patches

 ∑
i∈patch

xi · yi + 1

d1

d2

(3)

where the patches are a sequence of overlapping small crops within the crop to
be classified, d1 and d2 set the degree of the intra-patch and of the inter -patches
combinations, respectively. The intra-patch combinations consist of all the products
of the pixels within the patch up to degree d1, whereas the inter -patches ones consist
of all the products of the intra-patch combinations up to degree d2. Therefore, with
the sparse kernel we can approximately set the range of local and global correlations,
allowing the rejection of the majority of useless pixel combinations.
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Figure 6. Examples of training crops: “masses” (top row) and “non-masses”
(bottom row).

2.4. Training

The training of the system is obtained by presenting a set of 64 × 64 pixels windows
containing masses (positive examples) and a set of crops without lesions (negative
examples): this combined set forms the initial training database. Each positive
example is a portion of a digital mammographic image containing a mass; the mass
is contained completely within the square. The size of the positive crops is chosen
as follows: the ratio between the crop area and the area of the mass core should be
nearly 1.3. In this way, all the positive examples are characterized by having about
30% of background and 70% of the area taken by the mass. As a consequence, the real
size of the masses is smaller than the size of the searching scale (e.g. a scale with a 40
mm crop is appropriate for searching masses of 35 mm). The classifier is then trained
to recognize as positive a vector corresponding to a square centered on a lesion. Each
negative example has no superposition with any positive crop, since negative crops
are extracted from normal cases, whilst positive patterns come from malignant cases.
Figure 6 shows some patterns used in the training of the first classifier. Training for a
mass detection task is challenging because of the difficulty in characterizing the “non-
masses” examples: indeed, whilst the positive examples are quite well defined, there
are no typical negative examples. To overcome the problem of defining this extremely
large negative class, a bootstrap technique is used: after the initial training, the system
is retrained, by using a new set containing some misclassified false-positive examples.
Those examples are obtained from the detection of images not present in the initial
training set. This procedure is iterated until an acceptable performance is achieved.
In this way, the system is forced to learn by its own errors.

The second SVM classifier has been trained on the same positive examples used
for the first SVM, augmented by the positive patterns of the validation set, and by
the false positive signals detected by the first SVM. To this aim, we performed the
detection both on the training images and on unseen images (training and validation
set). The validation step aims to chose the best SVM architectures and the best
wavelet representation. The system is then tested on new unseen mammograms (test
set).

2.5. Materials

The data set used is part of the Digital Database for Screening Mammography
(DDSM) database collected by the University of South Florida, and freely available
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Table 1. Summary of the composition of the database used: number of masses,
images and cases in training and test for cancer and normal patients. Some images
contain more than one visible mass.

Training Test
Malignant Normal Malignant Normal

Masses 900 � 327 �

Images 800 600 312 200
Cases 420 150 144§ 50

§For the estimation of the per-case system performance, a case is defined as a
patient with visible masses in at least two views, only for malignant lesions.

1: 4%

2: 12%

5: 40%

Training
3: 22%

4: 22%

1: 5%

2: 12%

5: 50%

Test
3: 13%

4: 20%

Figure 7. Graphs representing the subtlety distribution of the lesions used in
training (left) and test (right). Subtlety data are considered according to BI-
RADS description (1: subtle lesion, 5: obvious lesion).

on the net at http://marathon.csee.usf.edu/Mammography/Database.html. The
entire database consists of more than 2500 cases, divided among bening, malignant,
and normal cases. Images containing suspect areas have associated ground truth
information about the locations and types of those regions. We selected images
digitized with Lumisys laser film scanner at 50 µm and Howtek scanner at 43.5 µm
pixel size. All the images have a 12-bit gray-level resolution. The normal cases have
been used both for estimating the false-positive rate and for providing the system
the negative examples during the training phase. Positive examples were extracted
from malignant cases, among about 800 images containing masses. The different
training sets used for the various experts are subsets of these images. A total of
512 images have been used for test: 312 malignant cancers from volume “cancer 02”,
“cancer 07”, and “cancer 12”, and 200 normal images from volume “normal 08” and
“normal 10”. For each volume, all cases are included, except those cases where the
microcalcifications was the only visible sign. For each case, four mammograms are
present: the cranio-caudal and the medio-lateral projections of left and right breast.
Nevertheless, for malignant cases we used only images containing masses, excluding
their controlateral views, if no masses were present there. In a few cases, the lesion
was visible in only one view. In addition, some cases present more than one mass per
view. Table 1 summarizes the composition of the database used. It is worth noting
that our definition of case, as described in Table 1 is significant only for the estimation
of the per-case performance, as we will see in the Results section. Figure 7 shows the
distribution of lesion subtlety for training and test images, as ranked by radiologists
who evaluated each individual mass.
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Figure 8. Top row: examples of positive (left) and negative (right) support
vectors. Bottom row: positive classified crops with their distance from MMH; the
three crops on the left are true masses, whilst the three crops on the right are
false-positives.

3. Results

With our CAD system we are searching for masses with a size smaller than 35 mm,
therefore we performed a multiscale detection, by using the following 8 scales: 8, 10,
13, 17, 22, 27, 33, and 40 mm. The three experts, named A, B, and C consist of
classifiers based on polynomial kernel of 2nd degree (A and C), and sparse polynomial
kernel of 2nd degree (B). Experts A and C differ in the patterns presented during the
training. Within each expert, the same kernel function has been used, both for the
first and the second SVM classifiers. The committee ensemble prompts regions, when
at least two experts have detected a signal in a 7 mm neighborhood.

One of the main advantages of SVMs is that they are able to compress the useful
information gained in the training into a reduced set of patterns, named support
vectors. Figure 8 shows an example of the support vectors obtained with one of
the classifier used in the present study. It is worth remarking that the positive
(masses) and negative (non-masses) support vectors are very similar to each other, by
confirming the fact that the support vectors are those examples near the separation
of the two classes. The same figure illustrates also some vectors classified as positive,
with their distance from MMH. These crops can be both true masses and false-positive
detections. We can note that higher distance from MMH means more evident lesion.
The combination of several experts aims to reduce the number of false-positives.
Figure 9 shows an example that explains this fact. Here, the true mass (pointed
by the arrow) is detected, since it is discovered by experts A and C. At the same
time, one false positive survives, while all other false signals are rejected, thanks to
the voting strategy.

We evaluated the performance of the detection method, by means of FROC
curves. An FROC curve is a plot of the detection rate versus the average number
of false-positive marks per image. An FROC curve provides a summary of the trade-
off between sensitivity and specificity. We put a threshold for each expert on the
maximum number of signals to be considered for the committee fusion. Basically, the
suspect candidates are ranked, according to their distance from the MMH of the second
SVM; then, we decided to keep only the best n signals. In fact, the distance from the
hyperplane is an index of confidence of the likelihood of a candidate to be malignant.
The different points of the FROC curve are obtained by varying n for each expert.
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Figure 9. Example of reduction of false signals due to the combination of experts.
Here, the true mass (pointed by the arrow) survives, whereas all but one false
positives are rejected, thanks to the voting strategy. The different size of the
prompts is related to the scale which detects that lesion.

A region is defined as true if its center falls within the ground-truth annotations,
otherwise it is considered as a false-positive. The false-positives are computed using
normal cases only. The performance results are presented on a per-mammogram and
a per-case basis. In the former, the cranio-caudal and medio-lateral oblique views are
considered independently. In the latter, a mass is considered discovered if it is detected
in either one of the views. Here, we considered only cases where at least two views
per patient contain masses. The per-case evaluation takes into consideration that, in
clinical practice, once the CAD alerts the radiologist to a cancer on one view, it is
unlikely that the radiologist will miss the cancer. Our scoring method considers all
the malignant masses on a mammogram (or in a case) as a single true-positive finding.
The rationale is that a radiologist may not need to be alerted to all malignant lesions
in a mammogram or case before taking action. Anyway, the great majority of cases
(more than 95 %) presents just one mass per view, so practically this method gives the
same results as if we consider each mass on a mammogram or in a case as a different
true-positive finding.

Figure 10 shows the performance of our CAD system on the 512 test images.
In the left side of the figure, the per-case performance of the three separate experts
and of the committee is depicted. The combination of several experts gives a clear
improvement, especially in the most important range of less than 1.5 false-positives
per image. Once again, that confirms the reduction of false alarms gained, thanks to
the experts fusion. In the right side of Figure 10, the per-mammogram and per-case
outcomes of the committee ensemble are shown. Results are promising, especially
if we consider that those images contain lesions of different sizes and types: oval,
circumscribed, and spiculated masses, and architectural distortions. We recall here
that the system has been trained on lesions characterized by a dense core, centered
on the crop, and with a crop/core area ratio of about 1.3. The test set contains
also some type of lesions very different by the training patterns, such as architectural
distortions or masses close to the chest border. The performance on the test images
clearly indicates the effectiveness of the presented system in detecting breast masses.
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Figure 10. Performance of our detection scheme on the test images: FROC
per-case of the single classifiers and of the committee ensemble (left) and FROC
of the committee ensemble per-mammogram and per-case (right).

Our results seem comparable with others obtained on the same database (Heat and
Bowyer 2000, Petrick et al 2002), even if we are aware that care must be taken when
comparing different results. Indeed, several factors affect the performance, such as
the characteristics of test images (e.g. lesion subtlety, size, etc.), and the strategy for
the estimation of true and false positive detection (Kallergi et al 1999). For instance,
Petrick et al defined as true-positive a lesion with an overlap between the bounding
box of the detected object and the bounding box of a true mass greater than 25%.
Instead, Heat and Bowyer adopted our same policy, for the computation of the true-
positives. On the other hand, they counted false-positives on cancer images, whereas
Petrick et al decided to count them on normal images. We have also investigated the
characteristics of the masses missed by our system. At a false rate of 1.2 false positive
marks per image, we miss 24 cases: 7 of them represent patients with an architectural
distortion as only visible sign, 4 of them have masses bigger than 3.5 cm and other 3
cases present masses very close to the chest border on both views. By analyzing these
outcomes, we can state that it is reasonable that the system overlooks those lesions
for the following reasons: first of all, in the detection step we focus our attention on
masses with a size smaller than 35 mm, since we performed a multiscale detection with
searching scales up to 40 mm (recall the area ratio factor mentioned above). A CAD
system must detect small lesions, for being helpful for an early diagnosis. Therefore,
we reckon that missing very big masses it is a little sin for a CAD software, since
radiologists won’t miss them for sure. On the other hand, our system has never seen
examples of architectural distortion or of masses close to the chest border during the
training. We make the decision of chosing training patterns consisting of masses with
a well defined core and centered on the crop, in order to facilitate the task of the SVM
classifier. A possible improvement of the present work could be the training of other
experts, each one focusing on a particular kind of lesions neglected in this version.
Thus, we could have experts for the detection of the architectural distortion, experts
for masses close to the chest border, and so on. We are confident that this will further
improve our performance.

4. Conclusion

The main goal of this paper is to show the feasibility of a novel featureless approach
for the detection of masses in digital mammography. The use of SVM classifiers
has allowed to manage the great amount of information provided by the wavelet
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overcomplete representation. Cascade classifiers and combination of different experts
have been adopted, in order to reduce the number of false-positive detections.

Results obtained on the difficult USF DDSM database are very promising: 80%
of cancers detected with 1.1 false marks per image. It is worth remarking that our
procedure automatically extracts the useful information directly from the images,
without needing an external set of features for classifying the suspect regions. The
only thing the system needs is a set of positive examples (masses) and a set of negative
examples (non-masses).

Future researches could be done, in order to improve the performance of the
algorithm. First, we could train other experts, each one focusing on a particular kind
of lesion. In addition, we are planning to test the CAD system on images coming from
a Full-Field Digital Mammography apparatus.
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