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Abstract. In this paper we investigate the feasibility of using an SVM (Support
Vector Machine) classifier in our automatic system for the detection of clustered
microcalcifications in digital mammograms. SVM is a technique for pattern
recognition which relies on the Statistical Learning Theory. It minimizes a
function of two terms: the number of misclassified vectors of the training
set and a term regarding the generalization classifier capability. We compare
the SVM classifier with an MLP (Multi-Layer Perceptron) in the false-positive
reduction phase of our detection scheme: a detected signal is considered either
microcalcification or false signal, according to the value of a set of its features.
The SVM classifier gets slight better results of the MLP one (Az value of 0.963
against 0.958) in presence of a high number of training data; the improvement
becomes much more evident (Az value of 0.952 against 0.918) in training sets of
reduced size. Finally, the setting of the SVM classifier is much easier than the
MLP one.

1. Introduction

Breast cancer is the most common form of cancer among women. The presence
of microcalcifications in breast tissues is one of the main features considered by
radiologists for its diagnosis. CAD (Computer Aided Diagnosis) systems have been
examined in order to assist doctors: the computer output is presented to radiologists
as a second opinion and can improve the accuracy of the detection. Several techniques
developed for the automated detection of microcalcifications can mainly be grouped
in three different categories: multiresolution analyses (Yoshida et al 1994, Lado
et al 1999), difference-image techniques (Chan et al 1987) and statistical methods
(Karssemeijer 1993, Gurcan et al 1998, Poissonier et al 1998). By comparing
the different methods it turns out that some microcalcifications are detected by
one method but missed by others: this is due to the existence of many types of
microcalcifications. It is often hard for one single detection scheme to discover different
types of signals with various characteristics.

In this paper we propose an approach based on the combination of different
detection methods in order to get optimal performances. Yoshida et al pointed out
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that the simultaneous use of two or more techniques might improve the results of
an optimized single method (Yoshida et al 1996). In our method we combine a
multiresolution analysis based on wavelet transform with a filtering method (Belikova
and Yaroslavsky 1980) and a gaussianity statistical test and then perform a logical
OR operation on the detected signals before clustering (Bazzani et al 2000).

A very critical phase of every CAD system is the FPR (False-Positive Reduction)
step: here a detected signal is considered either microcalcification or false signal,
according to the value of a set of its features. It is therefore necessary to set up a
classifier which, hopefully, maintains quite all the true detected signals and rejects, at
the same time, almost all the false positive signals. Other researchers (Woods et al
1993, Zhang et al 1996, Edwards et al 2000) have shown that the use of classifiers based
on Artificial Neural Networks can improve the performance of a detection scheme. In
this paper we present a classifier based on the SVM (Support Vector Machine).

SVMs have been introduced as a technique which relies on Statistical Learning
Theory (Vapnik 1995, Vapnik 1998). Whereas other techniques, e.g. MLPs (Multi-
Layer Perceptrons), are based on the minimization of the empirical risk, that is the
minimization of the number of misclassified vectors of the training set, SVMs minimize
a functional which is the sum of two terms. The first term is the empirical risk, the
second term (confidence term) controls the ability of the machine to learn any training
set without error. SVMs are attracting increasing attention because they rely on a
solid statistical foundation and appear to perform quite effectively in many different
applications (Lecun et al 1995, Osuna et al 1997, Pontil and Verri 1998). After
training, the separating surface is expressed as a certain linear combination of a given
kernel function centered at some of the data vectors (named support vectors). All the
remaining vectors of the training set are effectively discarded and the classification of
new vectors is obtained solely in terms of the support vectors.

The aim of our work is to investigate the feasibility of using an SVM classifier in
the FPR phase of our CAD detection method and to compare the SVM classifier to
the MLP one. Common sets of training data and test data are used to evaluate and
compare the classifiers. The performance of the detection scheme has been tested on
the 40 digitized mammograms coming from the Nijmegen hospital: this database is
considered as a benchmark for CAD systems. The images have been digitized to a
pixel size of 0.1 x 0.1 mm? and quantizied to 12-bits gray scales.

2. Methods

2.1. Overview of the detection scheme

Microcalcifications are very small spots that are relatively bright compared with the
surrounding normal tissue. Typically they are between 0.1 mm and 1 mm in size and
are of particular clinical significance when found in clusters of five or more in a 1
cm? area. Most of the clusters consist of at least one evident microcalcification and
other more hidden signals. Our approach includes two different methods: the first
one (coarse) is able to detect the most obvious signals and uses filtering techniques
and gaussianity tests, while the second one (fine), based on multiresolution analyses,
discovers more subtle microcalcifications.

First the digitized image is segmented to isolate breast tissues from image
background. In this way we reduce both the processing time and memory
requirements, since we analyze only areas which contain useful information for the
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Figure 1. Detection scheme.

detection. The segmented image is then passed to the two signal-extraction methods
described in the following subsections. Signals coming out from these methods are
combined through a logical OR operation and then passed to the FPR step. FPR is a
two classes pattern recognition problem: here the classifier (SVM or MLP) separates
true microcalcifications from false signals. The FPR phase is based on a local edge-
gradient analysis: we consider five features (area, average pixel value, edge gradient,
degree of linearity, average local gradient), which are the inputs of the classifiers. These
features are common and often used in microcalcifications detection methods, since
they are very useful in discriminating microcalcifications from false-positive signals
(Ema et al 1995). Finally, signals survived to the FPR phase are clusterized to give
the final result. The detection scheme is shown in figure 1.

2.2. Coarse method

In this part of the algorithm we remove structured image background by means of a
filtering technique. The scheme of the coarse method is shown in figure 2.

First of all we perform an iso-precision noise equalization as described in
Karssemeijer 1993. The equalized image is passed through a linear filter:

N1 N2

1 1
I;J = m Z: gln,mxi+n,j+m - m Z 92n,m171:+n,j+m
n,m=—N; n,m=—N3

where (2N7 + 1) and (2N + 1) are the sides of the masks g1 and g2, x; ; and z] ; are
the gray values of the pixel (7, j), respectively before and after filtering; g1 and g2 are
defined according to figure 3.

According to experimental evidences we assume that the remaining noise is
gaussian, since we have reduced the structured noise in the filtering step. We then
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Figure 2. Scheme of the coarse method.
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Figure 3. Filter masks g1 and g2.

employ a gaussianity test on the filtered image in order to choose ROIs that include
interesting signals. Since this image contains only gaussian noise and signals with
a high contrast we should have a deviation from gaussianity in regions including
microcalcifications. Here we perform the gray-level local thresholding: the central
pixel of the considered window of the filtered image is retained only if its gray level
is greater than the mean pixel value plus a preselected k multiple of the standard
deviation o; both the mean pixel value and o are estimated locally inside the window.
These signals will join others coming from the fine method described in the next
subsection.

2.3. Fine method

In this part of the detection scheme we try to discover more subtle microcalcifications,
by means of a multiresolution analysis based on the wavelet transform. In figure 4 the
scheme of the fine algorithm is depicted.

Microcalcifications are characterized by well-defined range size and high local
contrast, so we find out signals having these features. We split the algorithm into two
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Figure 4. Scheme of the fine method.

independent sections.

The first one detects signals having size smaller than 1 mm by means of a
multiresolution analysis based on the wavelet transform: we reconstruct the image
using the first three scales. To extract interesting signals we perform a local
thresholding in 40 x 40 pixels size windows. Assuming for the noise a gaussian
distribution, we fit with a parabola the gray level histogram of the window: then we
retain pixels having a gray level value greater than the one intersecting the parabola
and the x axis.

Signals having a high local contrast are enhanced in the second section, by using
a filtering technique. We subtract the image obtained by a 9 x 9 moving average
filtering from the enhanced image coming from a 3 x 3 gaussian filter. We carry out
the same local thresholding on the filtered image, followed by a morphological opening
operation. After that, a logical AND operation is accomplished on signals extracted
by these two sections of the fine method. Finally, as seen, these microcalcifications are
joined with others coming from the coarse method through the logical OR operator.

2.4. Overview of Support Vector Machines

SVMs are learning machines used in pattern recognition and regression estimation
problems (Cristianini and Shawe-Taylor 2000). They grow up from Statistical
Learning Theory (Vapnik 1995, Vapnik 1998), which gives some useful bounds on the
generalization capacity of machines for learning tasks. The SVM algorithm constructs
a separating hypersurface in the input space. It acts as follows:

(i) maps the input space into a higher dimensional feature space through some non
linear mapping chosen a priori (kernel);

(ii) constructs the MMH (Maximal Margin Hyperplane) in this feature space; MMH
maximizes the distance of the closest vectors belonging to the different classes to
the hyperplane.
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Let S be a set of | vectors x; € R™, (¢ = 1,2,...,1), in a n-dimensional space. Each
vector x; belongs to either of two classes identified by the label y; € {—1, 1}. If the two
classes are linearly separable, then there exists a hyperplane, defined by w-x+b = 0,
which divides S leaving all the vectors of the same class on the same side. It can be
easily shown that the MMH is given by the solution to the problem:

(1)

minimize % [|w|?
with yi(w-x; +b) > 1 (i=1,2,...,1)

where b/||lw|| is the distance between origin and hyperplane. This is a quadratic
programming problem, solved by Karush-Kuhn-Tucker theorem. If we denote with
a = (a1,a,...,q;) the | nonnegative Lagrange multipliers associated with the
constraints, the solution to the problem is equivalent to determining the solution
of the Wolfe dual problem:

maximize Z o — % Z ;0 (Xi - X;) Yy,
i i,

with Z@iyi =0 a; > 0.
i

The solution for w reads

W = Z QY X, (3)

The only «; that can be nonzero in equation (3) are those for which the constraints of
the first problem are satisfied with the equality sign. Since most of the «; are usually
null, the vector w is a linear combination of a often relatively small percentage of the
vectors x;. These vectors are termed support vectors and they are the only vectors
of S needed to determine the MMH. The problem of classifying a new data vector
X is now simply solved by looking at the sign of w - x + b with b obtained from the
Karush-Kuhn-Tucker conditions (Vapnik 1995).

In case the set S cannot be separated by any hypersurface, due to the partial
overlapping of the two classes, the previous analysis can be generalized by introducing
[ nonnegative slack variables & = (£1,&a,...,&) such that

yi(w-x;+0) >21-¢§ (i=1,2,...,0). (4)
The solution to

minimize Wl +Cd & (i=1,2,...,1)
i (5)
with yi(w-x; +b) >1-¢& (i=1,2,...,1)

is called SMSH (Soft Margin Separating Hyperplane). Once again, the vectors
satisfying the constraints of above with the equality sign are termed support vectors
and are the only vectors needed to determine the decision surface. Similarly to the
linearly separable case, the dual formulation requires the solution of a quadratic
programming problem with linear constraints:

maximize E o — % E i (X - X;) Yy,
, i

7

with Zaiyi =0 0< o <C.



An SVM classifier for microcalcifications in digital mammograms 7

Support Vectors

Feature 2

Feature 1 H, h

Figure 5. Example of a set of nonseparable vectors belonging to the two classes
A; (squares) and Ap (circles). There are depicted the SMSH H and the two
hyperplanes H; and Ha, with a distance from H equal to %A, where A = 2/||w||
is the margin. Here the support vectors (full squares and full circles) are those
vectors with distance %A from the SMSH and the misclassified vectors.

In figure 5 there are depicted an example of a set of nonseparable vectors belonging
to two classes Ay and Ay (squares and circles), the SMSH H which separes them and
the support vectors.

The entire construction can be extended rather naturally to include nonlinear
separating hypersurfaces. Each vector x in input space is mapped into a vector
z = ®(x) in a higher dimensional feature space. We can then substitute the dot
product < ®(x),®(y) > in feature space with a non linear function K (x,y), named
kernel. Conditions for a function to be a kernel are expressed in a theorem by Mercer
(Vapnik 1995). Admissible kernel functions are for example the polynomial kernel of d-
th degree K (x,y) = (1+x-y)? or the Gaussian kernel K (x,y) = exp(—||x—yl|?/20?).
Since in the dual formulation example vectors are present only in dot products, the
performing of point (i) becomes quite simple.

We would like to stress here that SVM in the form (5) does suffer from a limitation
in two common situations: it is unsuitable both in case of unbalanced distributions,
and whether we need to outweigh misclassified examples of one class (e.g. when one
type of misclassification is more serious than another). In order to generalize SVM
algorithm to these cases it is necessary to modify (5) in the following way (Morik et
al 1999):

minimize %HWHQ—FC_ZQ_ +C+Zf¢+ )
i i 7

with (Wex; +b) >1-& (wex; +b) < —14+&

where the first sum is for ¢ with labels y; = —1 and the second sum is for ¢ with labels
y; = +1 and C~ and C™T give different costs to false-positive and false-negative errors
respectively.



An SVM classifier for microcalcifications in digital mammograms 8

2.5. Cross-validation of the classifiers

The combination of the two detection methods described in the previous subsections
provides, for a certain configuration of parameters, about 9000 detected signals on the
40 images of the Nijmegen database. Most of them (about 8300) are false-positive
signals, whereas only 8% are true microcalcifications. In Nijmegen database we know
the ground truth relative to the clusters, but we do not have information about the
location of the single microcalcifications inside the cluster. In order to define true
and false signals, we have shown the images to three different radiologists, who have
marked the true microcalcifications. A detected microcalcification is then defined as
true if it is among the signals identified by the radiologists, otherwise it is considered
a false-positive. These 9000 signals represent the data on which the classifiers are
trained and tested. For each signal a set of five features has been calculated during
the detection task, therefore each input for the classifiers is a 5-dimensional vector.

The detected signals are divided into three groups: training, validation and test.
The first two groups are used to chose the best architecture of the classifier, while
through the test group we evaluate its performance on unknown cases. Each group
consists of about one third of the total signals and within them the two classes are
unbalanced (false signals are about 12 times the true microcalcifications). The problem
of having classes with different a priori probability is often encountered. For the
training of the MLP classifier, we select an equal number of samples from each of
the two classes from the training group: we keep all the true microcalcifications and
we randomly chose an equal number of false signals. Following Tarassenko (1998) we
then perform a post-scaling, in order to reduce the bias towards the more common
class. In practice, we scale the output of the MLP after training by a factor equal
to the unbalancing rate. Other researchers (Lawrence et al 1998) have investigated
these issues and discussed different methods for dealing with neural network classifiers
in practical situations. We want to stress that the SVM does not require balanced
classes, if we setup a classifier following the form (7): in this way it is not necessary
to artificially sample the training set. The validation and the test groups are keeped
unbalanced. We have randomly divided the 9000 detected signals into 3 groups for
9 different times. In the training we have investigated different configurations of
classifiers, both in MLP and in SVM cases. By averaging the results over the 9
validation groups, we have thus chosen the best MLP and SVM architectures, which
has been tested on the 9 test groups, in order to give the average performance. We
have compared the results of SVM and MLP with an LDA (Linear Discriminant
Analysis) classifier: LDA is very easy to use and it does not require the setting of any
parameters.

We have also investigated the behaviour of the classifiers with respect to a
variation of the size of the training set. To this end, we split the database into two
halves: a training group and a test group, each one consisting of 50% of the detected
signals. Randomly repeating this operation 9 times, we get 9 training groups and
9 test groups. We perform the training of the classifier with the best configuration
previously obtained and calculate the average performance on the 9 test groups. For
each training group we then select different reduced subgroups consisting of a number
of signals ranging from 13% up to 50% of the total signals; we then train the classifiers
using these subgroups and average the results on the test group.

ROC (Receiver Operating Characteristic) analysis, which is a widely used method
for evaluating the performance of a binary decision-making process in the medical
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Table 1. Average values of Az on the validation group for different SVM
configurations. PLM(i) represents a polynomial kernel of i-th degree, Gaussian(i)
a gaussian kernel with v = 3.

SVM configuration Az
PLM(2) 0.962 + 0.001
PLM(3) 0.963 = 0.001
PLM(4) 0.961 £ 0.002
PLM(5) 0.959 £ 0.002
PLM(6) 0.960 £ 0.002
PLM(7) 0.958 =+ 0.002
PLM(8) 0.956 = 0.002

Gaussian(0.01) 0.934 £+ 0.002
Gaussian(0.1) 0.948 £ 0.002
Gaussian(0.5) 0.960 + 0.002
Gaussian(1) 0.962 4+ 0.001
Gaussian(2) 0.962 £ 0.002
Gaussian(5) 0.960 £ 0.002

community, is employed to estimate the accuracy of the presented classifiers. The
ROC curve is a plot of the classifier’s TPF (true-positive fraction) versus its FPF
(false-positive fraction). Here the FPF is the probability of incorrectly classifying
a false alarm as a microcalcification, whereas the TPF is the probability of correct
classifying a true microcalcification as a microcalcification. The area under the ROC
curve (named Az) is an accepted way of comparing the performance of different
classifiers. In this paper the ROC analysis is perfomed by means of ROCKIT program,
developed by Metz et al (Metz 1986), which generates an ROC curve for the set of
points we are examining. The ROC curve also yields a value of Az, which indicates
an unbiased estimation of the performance of the classifier being tested.

3. Results

The first issue faced in this work is the choice of the best configuration of
both MLP and SVM classifiers. To this end, we train classifiers with different
architectures and estimate their performance on the validation groups obtained
as described in the previous subsection. We utilize an implementation of the
SVM developed by Joachims (Joachims 1999), the SVM! 9" program, available
at http://ais.gmd.de/~thorsten/svm_light. We have examined two different kernel
functions: polynomial with degree ranging from 2 to 8 and gaussian with values of
v = 1/(20?) ranging from 0.01 to 5. Fixed C~ = 1000, we vary the CT/C~ ratio
from 1 to 12 (the unbalancing rate), in order to obtain the different points of the
ROC curve. As the ratio CT/C~ increases, the loss of the true microcalcifications
is weighted more and more; in this way, the sensitivity of the detection method is
increased, reducing its specificity. The average values of Az on the validation group
are shown in table 1.

It turns out that the performance of all the polynomials and of gaussian kernels
with v = 0.5,1,2,5 are very similar. We then evaluate the average results of the
best two kernels on the 9 test groups, getting the values shown in table 2. We
therefore select the polynomial kernel of 3-rd degree as most suitable architecture
for our problem. It is important to underline that the choice of the kernel and of its
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Table 2. Average values of Az on the test group for the best SVM and MLP
configurations and LDA classifier. PLM(i) represents a polynomial kernel of i-th
degree, Gaussian(i) a gaussian kernel with v = 4. The best MLP architecture is a
two hidden layer network with 5 x 3 X 2 X 1 neurons.

Classifier configuration Az

SVM - PLM(3) 0.963 4+ 0.001
SVM - Gaussian(1) 0.962 £ 0.001
MLP - (5x3x2x1)  0.958 % 0.002
LDA 0.930 + 0.002

parameter (e.g. degree for the PLM and v for the gaussian) is not a delicate issue:
different kernels with a wide range of parameters give similar results, as we can see in
table 1. Thus, we can state that in our case the setting of the SVM classifier is easy,
since its performance does not depends strongly on the choice of the kernel type and
on its parameter.

In order to establish the best MLP architecture we have inspected networks
with different topologies, using the Rprop learning algorithm. For this purpose we
utilize a freely available program, the SNNS (Stuttgart Neural Network Simulator)
package. We train each network with an equal number of samples of the two classes,
obtained from the training groups. Actually, for each training set we use all the
true microcalcifications and an equal sample of false signals. It is worth mentioning
that, for each MLP network, we perform the training step 10 times, with different
random inizializations, in order to avoid local-minima traps. It occurs that the best
MLP architecture is a two hidden layer network (with 5 x 3 X 2 x 1 neurons) with
weight-decay exponent value 6.1, both initial update-value and maximum step size
equal to 0.33. The different points of the ROC curve are obtained by varying the
threshold value of the output neuron. The average values of Az on the test group are
shown in table 2. For the LDA classifier we use the LNKnet software, available at:
http://www.ll.mit.edu/IST /Inknet /index.html.

In figure 6 there are depicted three ROC curves relative to the best SVM and
MLP configurations and to the LDA classifier. We note that the results of the SVM
and MLP classifiers are comparable, whereas LDA gives clearly worse performance.
However we want to remark here that the setting of the SVM classifier is much easier
that the MLP one. First because there is a reduced number of parameters to be tuned
(at most 2). Second because the SVM acts resolving quadratic problems, consequently
it does not suffer from local-minima traps (in this way it is not necessary to perform
training with different random inizializations).

In figure 7 there is depicted the FROC (Free Response Operating Characteristic)
curve, which illustrates the performance of the entire detection scheme with the SVM
classifier. We yield a sensitivity of 95% true clusters with 0.6 false-positive clusters
per image on the 40 images of the Nijmegen database. The curve is relative to the
SVM classifier with polynomial kernel of 3-rd degree; we calculate the FROC as the
average on the whole database of the SVM classifiers trained on the 9 training groups
already mentioned. Our results are comparable with the best others obtained on the
same database (Brown et al 1998, Veldkmap and Karssemeijer 1998).

Another issue investigated is the behaviour of the classifiers with training sets of
reduced size. To this end we train the best classifiers previously obtained on training
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Figure 6. ROC curves on the test group for the best SVM and MLP
configurations obtained and for the LDA classifier.
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Figure 7. FROC of our detection scheme with the SVM classifier on the 40
images of the Nijmegen database.

groups with different number of signals. The size of the training set ranges from 13%
(about 1000 signals) up to 50% (4500 signals) of the total detected signals. The test
group size is fixed to 50% of the detected signals. The variation of Az as a function of
the training set size is depicted in figure 8. We notice that the smaller is the training
size, the more the SVM outperforms the MLP classifier. This situation is evident in
the case of a number of training signals equal nearly to 1000: in figure 9 there are
depicted the three relative ROC curves on the test groups.

The good performance of the SVM classifier in training sets of reduced size can
be extremely useful in several matters, since often it is very difficult to have a large
amount of data. We therefore expect to see a more massive use of SVMs, mainly in
problems where the scarcity of training data is unavoidable.
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4. Conclusion

We have investigated the feasibility of using an SVM classifier in the FPR phase of
a CAD method for the detection of microcalcifications in digital mammograms. The
results of the entire detection scheme with the SVM classifier is comparable to the
best others obtained on the 40 images of the Nijmegen database.

The first advantage of SVM over other traditional classifiers (e.g. MLP) is that its
setting is much easier. Besides, SVM does not risk to become trapped in local minima,
since it deals with quadratic problems (hence it always gets to the global minimum).
Consequently, for the SVM it is not necessary to repeat the training with different
random inizializations. With the SVM classifier we get results comparable with the
MLP ones, anyway much better than those obtained with LDA, when the number of
training signals is considerably high. On the other hand, the SVM outperforms both
the MLP and the LDA classifiers in deficiency of training data.

Therefore we think that SVM classifiers are much recommended for their simple
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utilization and their good performance, especially in reduced training set size.
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