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In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction
�FPR� in computer-aided detection �CAD� of breast masses. Two main considerations are at the
basis of this proposal. First, false positive �FP� marks surviving our previous CAD system seem to
be characterized by specific texture properties that can be used to discriminate them from masses.
Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale
transformations by encoding regions of interest into ranklet images through the ranklet transform,
an image transformation similar to the wavelet transform, yet dealing with pixels’ ranks rather than
with their gray-scale values. Therefore, the new FPR approach proposed herein defines a set of
texture features which are calculated directly from the ranklet images corresponding to the regions
of interest surviving our previous CAD system, hence, ranklet texture features; then, a support
vector machine �SVM� classifier is used for discrimination. As a result of this approach, texture-
based information is used to discriminate FP marks surviving our previous CAD system; at the
same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD
system is guaranteed, as ranklet texture features are calculated from ranklet images that have this
property themselves by construction. To emphasize the gray-scale invariance of both the previous
and new CAD systems, training and testing are carried out without any in-between parameters’
adjustment on mammograms having different gray-scale dynamics; in particular, training is carried
out on analog digitized mammograms taken from a publicly available digital database, whereas
testing is performed on full-field digital mammograms taken from an in-house database. Free-
response receiver operating characteristic �FROC� curve analysis of the two CAD systems demon-
strates that the new approach achieves a higher reduction of FP marks when compared to the
previous one. Specifically, at 60%, 65%, and 70% per-mammogram sensitivity, the new CAD
system achieves 0.50, 0.68, and 0.92 FP marks per mammogram, whereas at 70%, 75%, and 80%
per-case sensitivity it achieves 0.37, 0.48, and 0.71 FP marks per mammogram, respectively. Con-
versely, at the same sensitivities, the previous CAD system reached 0.71, 0.87, and 1.15 FP marks
per mammogram, and 0.57, 0.73, and 0.92 FPs per mammogram. Also, statistical significance of the
difference between the two per-mammogram and per-case FROC curves is demonstrated by the
p-value�0.001 returned by jackknife FROC analysis performed on the two CAD
systems. © 2009 American Association of Physicists in Medicine. �DOI: 10.1118/1.3049588�
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I. INTRODUCTION

In the last decades, many groups have developed computer-
aided detection �CAD� systems which facilitate radiologists
in early detection of masses on mammograms.1–3 Two of the
main problems encountered in the development of such sys-
tems, and not fully solved yet, can be illustrated as follows.
First, the majority of CAD systems is dependent on the gray-
scale histogram of the mammograms used for their training;
as a result, in order to get good performances on different
image databases, some parameters must be adjusted.4–6 Sec-
ond, as many false positive �FP� marks usually arises when
high sensitivity is desired, it is not easy to get good results in
terms of sensitivity-specificity trade-off; this is particularly
true for mass detection, as many breast parenchymal struc-
tures are particularly similar to masses and, therefore, hardly

7
distinguishable.
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Our group has recently developed a CAD system having
the potential of being independent on the gray-scale histo-
gram of mammograms;8–10 as a result, it can be trained on
one database, then tested on a different one without the need
to adjust any parameter. Such a CAD system is based on the
ranklet transform, an image processing technique having the
remarkable characteristic of being invariant with respect to
linear/nonlinear monotonic transformations of the histogram
of the image given as input.

As far as discriminating masses from FP marks, one of the
techniques that has emerged as particularly helpful in the last
years is texture analysis. Some investigations have been per-
formed on CAD systems making use of texture features de-
rived from gray-scale co-occurrence matrices.11–13 On one
hand, this analysis seems to be powerful for detecting masses

while reducing the number of FP marks; on the other hand,
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however, it is characterized by being dependent on the his-
togram of the image. Therefore, tuning must be done when
switching to a database of images with a different dynamic
range and, if invariance with respect to a histogram is de-
sired, one has either to normalize images before computing
texture features or choose only those features that are invari-
ant under monotonic gray-scale transformations.14

In this article, a CAD system for mass detection is pre-
sented. In particular, a new false positive reduction �FPR�
module has been added to a previous version of our CAD
system,8–10 this new FPR module being based on texture
features computed on ranklet images corresponding to the
regions of interest surviving our previous CAD system.15

The advantage of this new approach is twofold. First, well-
known powerful texture features are exploited for reducing
FP marks. Second, as a direct consequence of using ranklets,
gray-scale invariance is conferred to those features. As two
major results, a significant improvement on the performance
of the new CAD system over the previous one is achieved;
also, owing to the invariance of the entire system to gray-
scale transformations, such a CAD system can be trained on
a database of analog digitized mammograms, then tested on
a different database of full-field digital mammograms with-
out the need to tune any parameter.

II. MATERIALS AND METHODS

II.A. CAD scheme

A schematic block diagram of both our previous and new
CAD systems is shown in Fig. 1.

The detection module, common to both, is aimed at dis-
criminating abnormal from normal tissue. This is achieved
by first submitting the original mammogram to the predetec-
tion step, where regions more likely to be abnormal are en-
hanced by means of image processing techniques, such as
filtering, thresholding, and morphological operators. The re-
sulting regions are cropped at different scales by means of
overlapping square windows, then resized to
64�64 pixels.16 The resized crops are fed as inputs to the
ranklet transform, an image transformation similar to the
wavelet transform,17 yet invariant to linear/nonlinear mono-
tonic gray-scale transformations of the original image.8–10

Finally, the set of ranklet images that results from the ranklet
transformation of each crop is classified as corresponding to
abnormal or normal tissue by means of a first-level support
vector machine �SVM� classifier. At the end of the detection
module, a high mass detection rate, together with a high
number of FP marks, is generally achieved.

In order to reduce the number of FP marks while main-
taining the highest mass detection rate possible, a ranklet
FPR �i.e., RFPR� module was implemented so far; see the
left branch of the schematic block diagram shown in Fig. 1.
Each region surviving the detection module was encoded by
means of the ranklet transform into a set of ranklet images,
then classified as representative of a true positive �TP� or FP
finding by means of a second-level SVM classifier. At the

end of this previous version of our CAD system �RFPR CAD
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system, hereafter�, a high mass detection rate, together with a
reasonable number of FP marks, was generally achieved.

In this work, with the intention of reducing the number of
FP marks surviving the RFPR CAD system even more, an
additional ranklet texture FPR �i.e., RTFPR� module is pro-
posed; see the right branch of the schematic block diagram
shown in Fig. 1. For each region surviving at the detection
and RFPR modules, a set of texture features is extracted
from the corresponding ranklet images �hence, ranklet tex-
ture features15� and further classified as representative of a
TP or FP finding by means of a third-level SVM classifier.
The rationale behind this new version of our CAD system
�RFPR+RTFPR CAD system, hereafter� is twofold. First, a
visual inspection of FP marks surviving the RFPR CAD sys-
tem seems to indicate that texture plays a relevant role in
their characterization. Second, being invariant to linear/
nonlinear monotonic gray-scale transformations of the origi-
nal image, the process of encoding regions of interest into
ranklet images is crucial, since it allows the RFPR CAD
system to be run with similar performances also on mammo-
grams having a dynamic range completely different from that
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FIG. 1. Schematic block diagram of both the previous RFPR and new
RFPR+RTFPR CAD systems.
used for training; for instance, as it will be shown in the



313 Masotti, Lanconelli, and Campanini: Ranklet texture features for FPR in breast CAD 313
following, the RFPR CAD system can be trained on analog
and tested on digital mammograms without the need of any
specific parameters being adjusted. Therefore, in order to use
textural information, but at the same time to continue ex-
ploiting the gray-scale invariance of the ranklet transform,
the RFPR+RTFPR CAD system makes use of a set of ran-
klet texture features that is calculated directly from the ran-
klet images corresponding to each region of interest.

II.B. Ranklet transform

As shown in Fig. 1, the regions surviving the detection
module are encoded in the RFPR module of both the RFPR
and RFPR+RTFPR CAD system by means of the ranklet
transform for further analysis through SVM classification; an
identical approach is adopted by the detection module itself.

By applying the ranklet transform to an image I, multi-
resolution, orientation-selective, and nonparametric analysis
is performed.8–10 As a result of this transform, a number
nRI=nR�nO=nR�3 of ranklet images RI is produced, nR

and nO=3 being the number of resolutions and orientations
�i.e., vertical, horizontal, and diagonal� at which the analysis
is performed, respectively; also, as ranklet images are de-
rived from the relative rank of the pixels of I, rather than
their gray-scale values, they are nonparametric, hence very
robust to linear/nonlinear monotonic gray-scale transforma-
tions of the original image. As an example, Fig. 2 shows a
typical ranklet decomposition and how correspondent ranklet
images obtained by decomposing a region and its histogram-
equalized version �i.e., nonlinear monotonic gray-scale trans-
formation of the original image� are nearly identical. The
reader interested in a more detailed description of the ranklet
transform is referred to our previous works dealing with that
topic.8–10

As for the detection and RFPR modules discussed herein,
each region is decomposed into nR=4 resolutions, according
to what is discussed in one of our previous works,8 in fact,
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FIG. 2. Ranklet transform, invariance to linear/nonlinear monotonic gray-
scale transformations of the original image. Ranklet decomposition of an
image �a� and its histogram-equalized version �b� from resolution 2 up to 16.
Regardless of the images’ gray-scale histogram, the resulting ranklet decom-
positions are nearly identical.
this choice is as arbitrary as reasonable, since it spans over a
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large range of resolutions, from fine to coarse. The resulting
nRI=12 ranklet images are then linearized into a 1�1428
ranklet feature vector invariant to linear/nonlinear monotonic
gray-scale transformations of the original image and used to
discriminate through SVM classification between abnormal/
normal regions �i.e., detection module� and TP/FP findings
�i.e., RFPR module�.

II.C. Ranklet texture features

In the RTFPR module of the presented CAD system, the
ranklet images corresponding to the regions surviving the
detection and RFPR modules are used as a starting point to
calculate a number of ranklet texture features; see Fig. 1.

For each ranklet image RI derived from the ranklet de-
composition at different resolutions and orientations of an
image I, the texture feature extraction step calculates 11 tex-
ture features,15 these features being quite common in the
image processing community, as first proposed by Haralick
et al.,11 then used for mammographic CAD as well.12,13 As a
result of the texture feature extraction step, each ranklet im-
age RI is encoded by means of a 1�11 texture feature vec-
tor; an image I is hence encoded by a texture feature vector
obtained by concatenating a number of 1�11 texture feature
vectors equal to the number of ranklet images resulting for
its ranklet decomposition. Also, being invariant to linear/
nonlinear monotonic gray-scale transformations of the origi-
nal image,8–10 any texture feature calculated from one of
such ranklet images �see Fig. 2� is invariant as well. For
more details on ranklet texture features, the interested reader
is referred to our previous work dealing with that topic.15.

As far as the RTFPR module discussed herein, the regions
surviving the detection and RFPR modules are decomposed
into nR=4 resolutions; hence, they result in a 1�132 ranklet
texture feature vector invariant to linear/nonlinear monotonic
gray-scale transformations of the original image, namely, a
1�11 texture feature vector for each one of the nR=4 reso-
lutions and nO=3 orientations; these ranklet texture feature
vectors are used to discriminate through SVM classification
between TP/FP findings.

II.D. SVM classification

SVM is the classification technique adopted in the detec-
tion module of both the RFPR and RFPR+RTFPR CAD
system to assign a class membership �i.e., abnormal/normal
tissue� to the ranklet feature vectors corresponding to the
regions found by the predetection step; in the RFPR module
of both the RFPR and RFPR+RTFPR CAD systems, SVM is
used to assign a class membership �i.e., TP/FP finding� to the
ranklet feature vectors corresponding to the regions surviv-
ing the detection module; finally, in the RTFPR module of
the RFPR+RTFPR CAD system, SVM is used to assign a
class membership �i.e., TP/FP finding� to the ranklet texture
feature vectors corresponding to the regions surviving the
detection and RFPR modules.

Two phases are involved in SVM classification: �1� train-
ing of the SVM classifier on feature vectors with known

class memberships, and �2� testing of the SVM classifier on
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feature vectors not used for training. In the context of two-
class classification problems, SVM is a learning system that
uses an optimal hyperplane to separate the sets of feature
vectors into two classes, this hyper-plane being designed dur-
ing the training phase as the one with the maximum margin
of separation between the two classes. SVM classification is
a well-known technique and a detailed mathematical formu-
lation of its algorithm can be found by the interested reader
in the literature.18

II.E. Data

In order to stress the rationale behind the proposed ap-
proach �i.e., being able to use textural information, but con-
tinuing to exploit the gray-scale in-variance provided by the
ranklet transform�, training of both the RFPR and RFPR
+RTFPR CAD system is performed on mammograms hav-
ing a gray-scale dynamic completely different from that used
for test. To this purpose, training is carried out on analog
digitized mammograms taken from the digital database for
screening mammography �i.e., DDSM�, whereas testing is
carried out on full-field digital mammograms taken from an
in-house database. An example of the difference between
their gray-scale range is given in Fig. 3, where it is possible
to notice how their dynamic range is different, namely, more
than one order of magnitude on average. Visual appearance
of the two databases is different as well: by looking at Fig. 4,
in fact, full-field digital mammograms present a wider dy-
namic range than analog digitized mammograms, this allow-
ing one to perceive a better contrast; furthermore, tissue
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FIG. 3. Difference between the gray-scale dynamics used for training and
test both the previous RFPR and new RFPR+RTFPR CAD systems: aver-
age gray-scale histogram of analog digitized DDSM mammograms used for
training �a� and full-field digital in-house mammograms used for test �b�.

Analog Digitized Full−Field Digital

FIG. 4. Analog digitized DDSM mammograms and full-field digital in-
house mammograms provided as inputs to the CAD system. Digital mam-
mograms present a wider dynamic range, which allows one to perceive a
better contrast. Also, tissue close to the skin and the nipple can be observed
well on digital mammograms, whereas it is barely visible on analog

mammograms.
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close to the skin and the nipple can be observed on the
former, whereas it is barely visible on the latter.

In such a situation, when gray-scale-dependent param-
eters are used in a CAD system, one should act in some way
to get the same performance on the two databases. One could
either normalize the gray scale of the two databases, or ad-
just some parameters to get the same results. Unfortunately,
it is not easy to normalize the histogram of the images in a
reliable and robust way, as often a unique transformation that
can map the gray-scale range of one database into the other
does not exist. On the other hand, it could be time-
consuming and not very effective to manually tune some
parameters, given that one should check the performance of
the tuning on a test set extracted from the second database.
Conversely, owing to the invariance to linear/nonlinear
monotonic gray-scale transformations of the proposed CAD
system, all the aforementioned procedures can be skipped.

In the present work, training of the first-level SVM clas-
sifier �see the detection module of both the RFPR and
RFPR+RTFPR CAD system in Fig. 1� is performed with
ranklet feature vectors corresponding to 251 masses and
1250 normal crops extracted by analog digitized DDSM
mammograms. After training is completed, the detection
module is run on 292 cancer and 288 normal analog digitized
DDSM mammograms, those mammograms being distinct
from the previous ones. TP and FP findings surviving the
detection module are fed into the ranklet transform; then, the
resulting ranklet feature vectors are used to train the second-
level SVM �see the RFPR module of both the RFPR and
RFPR+RTFPR CAD systems in Fig. 1�. Finally, after train-
ing of the second-level SVM is completed, the detection and
RFPR modules are run on a further distinct set of 292 dis-
eased and 288 normal analog digitized DDSM mammo-
grams; TP and FP findings surviving the detection and RFPR
modules are fed into the ranklet transform; then, ranklet tex-
ture features are calculated and used to train the third-level
SVM �see the RTFPR module of the RFPR+RTFPR CAD
system in Fig. 1�. After being trained on analog digitized
DDSM mammograms, testing of both the RFPR and RFPR
+RTFPR CAD systems is carried out on full-field digital
mammograms, namely, 196 diseased mammograms with one
mass each �i.e., 100 cases� and 688 normal mammograms
�i.e., 172 cases�. Full-field digital mammograms are taken
from various IMS Giotto Image MD units �Internazionale
Medico Scientifica, Bologna, Italy�. They are characterized
by having an 85 �m pixel and a dynamic range completely
different from that of the analog digitized ones. Lesions’
locations have been marked by expert radiologists and col-
lected, together with images.

II.F. Performance evaluation

Performance evaluation of both the RFPR and RFPR
+RTFPR CAD systems is assessed by using free-response
operating characteristic �FROC� curve analysis, namely, a
plot showing the mass detection sensitivity as a function of
the average number of FP marks per mammogram.19 Mass

detection sensitivity �sensitivity, hereafter� is calculated on a
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per-mammogram and per-case basis: in the first case, it is
calculated as the percentage of masses detected individually
by the CAD system, over the total number of masses marked
by the radiologist on the test set’s diseased mammograms; in
the second case, it is calculated as the percentage of masses
detected in either or both the cranio-caudal and medio-lateral
oblique views by the CAD system, over the total number of
the test set’s diseased cases. At a given sensitivity, the aver-
age number of FP marks per mammogram �FPs per mammo-
gram, hereafter� is calculated by counting, on the test set, the
average number of marks prompted by the CAD system per
normal mammogram. As in this work two CAD systems are
compared; up to four FROC curves are obtained, namely, a
per-mammogram and a per-case FROC curve for each one.
In order to estimate the statistical significance of the differ-
ence between the two per-mammogram and per-case FROC
curves, the jackknife FROC �i.e., JAFROC� method is
adopted;20 in particular, version 2.3 of Chakraborty’s JAFROC

software is used. A figure of merit to quantify the perfor-
mance of each FROC is reported, this being a nonparametric
estimator of the area under the FROC curve returned from
the JAFROC software; more details about the meaning of this
estimator can be found in the literture.

III. RESULTS AND DISCUSSION

In Fig. 5, the per-mammogram and per-case FROC curve
analysis of both the RFPR and RFPR+RTFPR CAD systems
is shown. As a result of the introduction of ranklet texture
features, a performance improvement is evidenced, this im-
provement being even clearer in the range that goes from 0.2
to 0.5 FP marks per mammogram; this is extremely impor-
tant, as the operating point of clinical CAD systems is often
positioned within this range. In Table I, a summary of the
FPs per mammogram survived at several per-mammogram
and per-case sensitivities is reported, together with the cor-
responding FP reduction provided by the RFPR+RTFPR
over the RFPR approach. Statistical significance of the dif-
ference between the two per-mammogram and per-case
FROC curves is shown in Table II. Finally, Fig. 6 shows
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some visual examples of FP marks eliminated by the RTFPR
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module. Two typical classes of FP marks are eliminated: �1�
signals arising from superposition of breast structures and �2�
FP marks in dense breasts. The first class is very common for
many types of breasts and is due to the overlapping of breast
tissues �or calcified vessels� projected on the planar image;
overlapped tissue can resemble in some cases the spiculae
typical of infiltrating cancers and, in this case, texture analy-
sis is very useful to separate these structures from spiculated
lesions. The second class is more subtle, as the fibro-
glandular tissue that can produce FP marks is much more
widespread on dense breasts; also in this case, texture analy-
sis could help in eliminating FP marks. However, when tex-
ture features are gray-scale-dependent, it is not easy to adjust
FPR parameters to get a good performance for any type of
breasts. Our approach facilitates the rejection of FP marks, as
it does not depend on the histogram of the image; hence, it
could be optimized for every type of mammogram coming
from every type of mammographic unit, both analog and
digital.

IV. CONCLUSIONS

By testing without adjusting parameter both the RFPR
and RFPR+RTFPR CAD system on mammograms having a
gray-scale dynamic completely different from that used for
training �i.e., analog digitized DDSM mammograms for
training, full-field digital in-house mammograms for testing�,
the invariance to gray-scale variations of the two CAD sys-
tems is emphasized. As far as the higher FPR achieved by

TABLE I. Summary of the per-mammogram and per-case FROC curve analy-
sis for both the previous RFPR and new RFPR+RTFPR CAD systems. For
the two CAD systems, FPs per mammogram and FP reduction are reported
at different per-mammogram and per-case sensitivities.

Sensitivity

FPs per mammogram

FP
reduction

RFPR
CAD system

RFPR+RTFPR
CAD system

60% 0.71 0.50 30%
Per mammogram 65% 0.87 0.68 22%

70% 1.15 0.92 20%

70% 0.57 0.37 35%
Per case 75% 0.73 0.48 34%

80% 0.92 0.71 23%

TABLE II. JAFROC analysis of both the previous RFPR and new RFPR
+RTFPR CAD systems. For the two CAD systems. JAFROC’s figure of
merit and p-value associated with the statistical significance of the differ-
ence between the two figures of merit are reported on per-mammogram and
per-case basis.

JAFROC’s figure of merit

p-value
RFPR

CAD system
RFPR+RTFPR

CAD system

Per mammogram 0.51 0.56 �0.001
Per case 0.57 0.63 �0.001
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the RFPR+RTFPR over the RFPR CAD system, this is dem-
onstrated by the FROC curve analysis carried out on them.
Also, the difference between the two per-mammogram and
per-case FROC curves is revealed to be statistically signifi-
cant according to the p-value �0.001 returned by JAFROC
analysis.
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