
A ranklet-based CAD for digital mammography 

Enrico Angelini1, Renato Campanini1, Emiro Iampieri1, Nico Lanconelli1,  
Matteo Masotti1, Todor Petkov1, and Matteo Roffilli2 

1 Physics Department, University of Bologna, and INFN, Bologna,  
Viale Berti-Pichat 6/2, 40127 Bologna, Italy 

2 Computer Science Department, University of Bologna,  
Mura Anteo Zamboni 7, 40127 Bologna, Italy 

nico.lanconelli@bo.infn.it 

Abstract. A novel approach to the detection of masses and clustered 
microcalcification is presented. Lesion detection is considered as a two-class 
pattern recognition problem. In order to get an effective and stable 
representation, the detection scheme codifies the image by using a ranklet 
transform. The vectors of ranklet coefficients obtained are classified by means 
of an SVM classifier. Our approach has two main advantages. First it does not 
need any feature selected by the trainer. Second, it is quite stable, with respect 
to the image histogram. That allows us to tune the detection parameters in one 
database and use the trained CAD on other databases without needing any 
adjustment. In this paper, training is accomplished on images coming from 
different databases (both digitized and digital). Test results are calculated on 
images coming from a few FFDM Giotto Image MD clinical units. The 
sensitivity of our CAD system is about 85% with a false-positive rate of 0.5 
marks per image. 

1. Introduction 

Two of the most frequent problems encountered in developing CAD systems for 
mammography are the following. First, the automatic detection of breast lesions can 
be hampered by the wide diversity of their shape, size and subtlety. Detection 
methods often rely on a feature extraction step: here, lesions are isolated by means of 
a set of characteristics. Due to the great variety of lesions, it is extremely difficult to 
get a common set of features effective for every kind of lesion. This is particularly 
true for masses, since they can vary considerably in optical density, shape, position, 
size and characteristics at the edge. A second difficulty arises from that the detection 
algorithms are often unstable, with respect to the dynamic range of the image 
histogram. As a matter of fact, the CAD algorithms have to be repeatedly tuned, when 
images coming from different systems are considered. A suitable Look Up Table 
(LUT) can accomplish a sort of “normalization” to the images before the CAD 
analysis. In this way, the same detection scheme can be applied to images coming 
from different detectors and acquired in different exposure conditions. Unfortunately, 
it is not so easy to gain a proper LUT, which can maximize the performance of the 
CAD for any acquisition condition. 



In this paper, we present a detection system, which does not rely on any feature 
extraction step and which is stable with respect to the image histogram. The first 
attribute stems from using an SVM classifier, whilst the second derive from the 
ranklet representation. The algorithm automatically learns to detect the lesions by the 
examples presented to it. In this way, there is no a priori knowledge provided by the 
trainer: the only thing the system needs is a set of positive examples and a set of 
negative examples. The detection scheme codifies the image with a ranklet 
representation; the great amount of information handled by the algorithm is classified 
by means of a Support Vector Machine (SVM) classifier. SVMs have already been 
applied to CAD issues in mammography since 2001 [1]. An approach based on SVM 
classifier, without using extracted features, has been investigated both for masses and 
microcalcification detection [2,3,4]. Here, we present a novel use of ranklets, as an 
effective representation for the image crops to be classified. Ranklets are 
nonparametric, multiresolution and orientation selective features modeled on Haar 
wavelets first introduced in 2002 [5]. The first attempt to use ranklets as data 
representation for recognition problems was for face detection problems. Current 
comparative researches between wavelets and ranklets on CAD systems seem to 
demonstrate that ranklets are able to achieve better performances when applied to 
represents tumoral masses. 

In this study, we validate our detection scheme with images coming from a few 
FFDM units: the systems used were “Giotto IMAGE MD” produced by IMS, Italy. 
They are based on amorphous Selenium flat panel digital detector manufactured by 
ANRAD Corporation, Canada. The active area of the imager is 17.4 cm × 23.9 cm 
with a pixel pitch of 85 micrometers; images have 2048 × 2816 pixels with 13 bit 
gray-level resolution. In order to have a large number of training images, we trained 
the CAD system both on digital images coming by the FFDM units and on digitized 
images coming the USF DDSM database available on the net [6]. 

2. Methods 

The ranklet-based CAD is characterized by not requiring extracted features for 
detecting the breast lesions. The algorithm automatically extracts the needed 
information during the training phase. The CAD system has been trained to detect 
both clustered microcalcifications and masses. Figure 1 shows a chart of our detection 
scheme. 

The detection scheme 

The CAD detection scheme consists of two separate algorithms; one able to detect 
masses and another one for detecting clustered microcalcifications. The first step of 
the mass detection algorithm consists in a pre-selection of the suspect regions within 
the breast. This is achieved by means of adaptive local gray-level thresholding. All 
the selected pixels are then analyzed by an ensemble of three different experts. Each 
expert is able to accomplish a multiscale detection, in order to find out masses with 
size ranging from 3 mm to 35 mm. The searching performed by each expert is based 



on the SVM classification of the ranklet representation of all the crops centered on the 
pixels selected in the first step. Finally, a region is marked as suspect mass by using a 
voting strategy on the committee of the three experts. An ensemble of experts 
improves the overall performance of individual experts, if the individual experts 
commit mistakes on different objects. Basically, a region is considered suspect only if 
at least two of the three experts detect that region. 

 

 

Fig. 1. Chart of the ranklet-based detection scheme. 

 
The first step of the microcalcification detection method consists in a pre-selection 

of the regions containing bright spots. This is achieved by means of a statistical test 
calculated on a linear-filtered image. Pixels passing that test are then provided to a 
detector similar to the experts used for the masses. Here, a ranklet representation of 
the crops centered on the points extracted in the first step is obtained. After that, the 
crops are judged as positive or not, by using an SVM classifier. The main difference 
of the featureless detection between masses and microcalcifications is that in the first 
case a multiscale searching is used, whereas in the second case crops of fixed size are 
considered. The single adjacent pixels classified as suspect are the grouped together 
and clusterized, if more than two signals in a 1 cm2 area are detected. 

Finally, signals discovered by the masses and clustered microcalcifications 
detectors are joined by means of a logical OR operator, and a maximum 



predetermined number of marks are presented as the final result. Signals are ranked 
by means of their distance from the separating hyperplane traced by SVM. 

Image dataset 

The training dataset consists of a number of “positive” and “negative” crops. 
“Positive” crops were extracted from cancer images and are centered on the lesions 
(masses or single microcalcifications). “Negative” crops were extracted randomly 
from normal images (i.e. from images without lesions). We used about 850 positive 
crops for training the CAD system (600 single microcalcifications and 250 opacities). 
A more complete description of the training procedure can be found in [2]. 

The dataset used for testing CAD performance consists of more than 1000 images 
not used for training and coming from various “Giotto Image MD” FFDM systems. 
Images have a pixel size equal to 85 micrometers and a gray-level resolution of 13 
bits; they have been collected both in the course of the clinical evaluation of the 
FFDM system and subsequently during the regular clinical examinations. The 
database includes about 900 normal images (without lesions) and 140 images with at 
least one lesion, such as tumor opacities or clustered microcalcifications. The location 
of the lesions have been marked by expert radiologists and collected together with the 
images. Digital mammograms were always available in four projections per patient. 
Each case is relative to one patient and comprises the four projections (two cranio-
caudal and two medio-lateral views). Performances are estimated by means of FROC 
curves, both on a per-image and a per-case basis. 

False-positives marks were calculated on 154 normal images coming from 
screening examinations and with a follow-up of at least 1 year. These normal images 
were extracted from randomly chosen patients. The true positive performance were 
evaluated on 140 cancer images coming from symptomatic patients and confirmed by 
biopsy. 30 cases show masses as only signs of cancer, whereas 37 cases show only 
clustered microcalcifications. Three patients show both masses and 
microcalcifications.  

The ranklet representation 

Given a set of (x1, x2, ..., xN) pixels, the rank transform substitutes each pixel’s 
intensity value with its relative order (rank) among all the other pixels. This is a 
nonparametric transform since, given an image with N pixels, it replaces the value of 
each pixel with the value of its order among all the other pixels. Ranklets are designed 
starting from the three 2D Haar wavelets and the rank transform. In analogy to the 
wavelet transform, ranklet coefficients can be computed at different orientations by 
applying vertical, horizontal and diagonal Haar wavelet supports to each image under 
analysis. As a result, the orientation selectivity feature of the ranklet representation 
follows.  

Finally, the close correspondence between the Haar wavelet transform and the 
ranklet transform leads directly to the extension of the latter to its multiresolution 
formulation. This means that, as for the wavelet transform, it is possible to compute 



the ranklet transform of an image at different resolutions by means of a suitable 
stretch and shift of the Haar wavelet supports. At the same time, for each resolution, it 
is possible to characterize the image by means of orientation selective features such as 
the vertical, horizontal and diagonal ranklet coefficients. The multiresolution ranklet 
transform of an image is thus a set of triplets of vertical, horizontal and diagonal 
ranklet coefficients, each one corresponding to a specific stretch and shift of the Haar 
wavelet supports. 

 

 

Fig. 2. The three Haar wavelet supports hV, hH and hD. From left to right, the vertical, horizontal 
and diagonal Haar wavelet supports. 

The ranklet transform is defined by first splitting the N pixels into two subsets T 
and C of size N/2, thus assigning half of the pixels to the subset T and half to the 
subset C. The two subsets T and C are defined being inspired by the Haar wavelet 
supports depicted in Fig. 2. In particular, for the vertical Haar wavelet support, the 
two subsets TV and CV are defined; similarly for the horizontal and diagonal ones. The 
definition of the aforementioned Haar wavelet supports forms the basis for the 
orientation-selective characteristic of the ranklet transform. 

The second step consists in computing and normalizing in the range [-1, +1] the 
number of pixel pairs (pm, pn), with pm ∈ T and pn ∈ C, such that the intensity value of 
pm is higher than the intensity value of pn. This is done for each orientation, namely 
vertical, horizontal and diagonal. 

The geometric interpretation of the so-called ranklet coefficient Rj is quite 
straightforward. Suppose that the image we are dealing with is characterized by a 
vertical edge, with the darker side on the left, where CV is located, and the brighter 
side on the right, where TV is located. RV will be close to +1 as many pixels in TV will 
have higher intensity values than the pixels in CV. Conversely, RV will be close to -1 if 
the dark and bright side are reversed. Horizontal edges or other patterns with no 
global left-right variation of intensity will give a value close to 0. Analogous 
considerations can be drawn for the other ranklet coefficients, RH and RD The use of 
the pixels' ranks, rather than their intensities, forms the basis for the non-parametric 
characteristic of the ranklet transform. 

The close correspondence between the Haar wavelet transform and the ranklet 
transform leads directly to the extension of the latter to its multiresolution 
formulation. Similarly to what is done for the bidimensional Haar wavelet transform, 
the ranklet coefficients can be computed at different resolutions by simply stretching 
and shifting the Haar wavelet supports. The multiresolution ranklet transform of an 



image is thus a set of triplets of vertical, horizontal and diagonal ranklet coefficients, 
each one corresponding to a specific stretch and shift of the Haar wavelet supports. 
The possibility of computing ranklet coefficients at different resolutions forms the 
basis for the multiresolution characteristic of the ranklet transform. 

3. Results 

In order to have a remarkable number of training patterns, we accomplished the 
training of the CAD algorithm by using both digitized and digital images. Digitized 
examples were selected by cropping images from the USF DDSM database available 
on the net. Digital images coming from the Giotto FFDM units were used both for 
training and testing the CAD system. The use of images coming from various 
systems, without performing any normalization step has been practicable, thanks to 
the innate features of the ranklet transform. 

The CAD system presents a sensitivity nearly equal to 85%, with a false-positive 
rate of 0.5 marks per image. The sensitivity has been calculated both on a per-case 
and on a per-image basis. In the first case, the true-positive rate is equal to the number 
of positive patients correctly detected over the total number of positive patients. In the 
latter case, results are equal to the ratio between the number of positive images 
correctly detected and the total number of cancer images. The false-positive rate has 
been computed on the normal images.  

 

 

Fig. 3. FROC results of the ranklet-based CAD system on the test images. True-positive rate 
results are shown on a per-case and per-image basis. 

 



Fig. 3 shows the FROC curves of our CAD system on the test images. The distinct 
performance for the masses and microcalcifications algorithms for a specific point of 
the FROC curve is the following. The masses detector shows a per-case sensitivity 
equal to 76% with a false-positive rate of 0.3 false-positive marks per image, whilst 
microcalcifications detector demonstrates a true-positive per-case rate equal to 93% 
with a false-positive rate of 0.2 false-positives per image. 
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