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Abstract. In this paper, we investigate the improvement obtained by

applying a distributed genetic algorithm to a problem of parameter op-

timization in medical images analysis. We setup a method for the detec-

tion of clustered microcalcifications in digital mammograms, based on

statistical techniques and multiresolution analysis by means of wavelet

transform. The optimization of this scheme requires multiple runs on a

set of 40 images, in order to obtain relevant statistics. We aim to evaluate

how fluctuations of some parameters values of the detection method in-

fluence the performance of our system. A distributed genetic algorithm

supervising this process allowed to improve of some percents previous

results obtained after having “hand tuned” these parameters for a long

time. At last, we have been able to find out parameters not influencing

performance at all.

1 Introduction

The presence of microcalcifications in breast tissue is one of the most important

signs considered by radiologist for an early diagnosis of breast cancer, which is

one of the most common form of cancer among women. Statistical analyses show

how errors in microcalcifications detection are very high in population screening

programmes. A feasible solution, in order to reduce these kind of errors, con-

sists in providing doctors with a computer aided system, which could act as a

“second radiologist”. Experiments showed that these systems can significantly

improve the accuracy in the detection task. Our Computer Aided Diagnosis

(CAD) scheme described in [1] is quite complex and its effectiveness depends

on the values of different parameters. Therefore it is necessary to optimize the

choice of these parameters, in order to achieve good performance. Unfortunately,

their number is very high (about thirty) and they are correlated with each other.
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Consequently, it is difficult to get an optimal choice of them. In the earlier study

the selection were performed manually; we refer to this procedure as the “hand

tuned” one. In this paper, we present an automated method for the selection

of the parameters values by means of a genetic algorithm. Genetic Algorithms

(GAs) search the solution space to maximize (minimize) a fitness (or cost) func-

tion by using simulated evolutionary operators such as mutation and sexual

recombination. In this study the fitness function to be maximized reflects the

goal of maximizing the number of true-positive detections while minimizing the

number of false-positive detections.

GAs are currently applied to many diverse and difficult optimization prob-

lems (see [2] and [3]). In a number of applications where the search space was

too large for other heuristic methods or too complex for analytic treatment GAs

produced favorable results. Other researchers in [4] and [5] have shown that GAs

could improve the performance of a CAD scheme.

In the present study, we will evaluate how the parameter values fluctuations

influence the performance of the CAD scheme and which parameters more affect

the cost function; our goal is as well to select, by using a GA, the most significant

parameters. The GA needs to evaluate several generations, in order to obtain a

good optimization. Due to the very long time required for one run, it would be

almost impracticable to execute the GA on a sequential architecture. We there-

fore implement a distributed GA on a small Network Of Workstations (NOWs),

by realizing a global parallelized GA. In this type of parallel GAs, there is only

one population, as in the serial GA, and even if the evaluation of individuals is

parallelized explicitly, the algorithm remains unchanged. In this way, we could

easily apply the existing principles for sequential GAs.

We accomplish the optimization of our CAD scheme by using the 40 digitized

mammograms of the Nijmegen database. Performances of the detection scheme

are shown by means of Free Response Operating Characteristic (FROC) curves:

they display the number of true positive clusters of microcalcifications detected

versus the average number of false positives per image.

2 The Detection Method

Microcalcifications are very small spots which appear brighter than the surround-

ing normal tissue. Typically they are between 0.1 mm and 1 mm in size and are

of particular clinical significance when found in clusters of five or more in a 1

cm2 area. Most of the clusters consist of at least one evident microcalcification

and other more hidden signals.

Our approach to the detection task includes two different methods: the first

one (coarse) is able to detect the most obvious signals, while the second one (fine),

based on multiresolution analyses, discovers more subtle microcalcifications (see

[1]). Signals coming out from these two methods are combined through a logical

OR operation and then clusterized to give the final result. There are some steps,

common to both coarse and fine methods:

– pre-processing, which isolates breast tissue;
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– filtering, in which structured background is removed;

– signal extraction, to find out microcalcifications candidates signals;

– false positive reduction, where microcalcifications are separated, by calculat-

ing a set of features, as described in [1] and [6] from false signals extracted.

In all these tasks there are several parameters to be tuned; we used twenty-nine

of them (listed in Table 1) for the optimization process with the GA. A very

critical phase of every CAD system is the false positive reduction step: here a

detected signal is considered either microcalcification or false signal, according

to the value of a set of its features.

Table 1. Parameters used in the optimization process

Parameters of the coarse method Parameters of the fine method

Size of the local thresholding window

Threshold for Gaussianity test ht

Values for local thresholding k
Minimum edge gradient (EG)

Maximum EG

Minimum average local gradient (ALG)

Maximum ALG

Minimum area of signal Minimum area of signal

Maximum area of signal Maximum area of signal

Minimum gray level (GL) Minimum gray level (GL)

Maximum GL Maximum GL

Minimum degree of linearity (DL) Minimum degree of linearity (DL)

Maximum DL Maximum DL

ct11, in: GL > ct11 * EG + ct12 p1, in: EG < p1 * tanh(p2 * GL)

ct12, in: GL > ct11 * EG + ct12 p2, in: EG < p1 * tanh(p2 * GL)

ct21, in: DL < ct21 * ALG + ct22 p3, in: EG > p3 * GL + p4

ct22, in: DL < ct21 * ALG + ct22 p4, in: EG > p3 * GL + p4

ct31, in: DL > ct31 * ALG + ct32
ct32, in: DL > ct31 * ALG + ct32

Most of the parameters are thresholds to choose the range of features values in

this false positive reduction phase; others are used for selecting regions of interest

or extracting signals (see [1]). Any individuals of the population considered in

GA optimization is therefore described by a string (gene) of twenty-nine values.

Each one of them represents a parameter value and can be a real or an integer

number, according to the domain of the parameter itself. The purpose of the

optimization of a CAD scheme is to find out the set of parameters which gets the

highest number of true positive clusters of microcalcifications with the lowest rate

of false positive clusters, i.e. the best tradeoff between sensitivity and specificity.

This tradeoff is described by the design of the fitness function.
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3 The Genetic Algorithm

3.1 Design

The advantages in using GAs are that they require no knowledge or gradient

information about the response surface, they are resistant to becoming trapped

in local optima and they can be employed for a wide variety of optimization

problems. On the other hand GAs could have trouble in finding the exact global

optimum and they require a large number of fitness functions evaluations. It is

very difficult to achieve analytic relationship between the sensitivity of the CAD

and the parameters values to be optimized. Since a GA does not need this kind

of information, it should be suitable in our optimization task.

If there is an explicit knowledge about the system being optimized, that

information can be included in the initial population. In this study we initialize

the population to the best “hand tuned” results.

An evolutionary strategy needs to be adopted in order to generate individuals

for the next generation. We chose an elitist generation as replacement operator.

Namely the individuals are ranked by their fitness and only the best of them

(10% of the population) are taken unchanged into the next generation. In this

way, we guarantee that good individuals are not lost during a run. Other children

come from crossover and mutation, (their associated probabilities are pCO and

pMUT respectively).

The aim of the fitness function is to numerically represent the performance

of an individual. In our case a couple (true positives, false positives) is mapped

by this function to a real number normalized between 0 and 1. That number

encodes the excellence of a couple obtained by a particular individual (i.e. a

set of parameters in the CAD scheme). We designed the cost function as a 2D

gaussian, with the maximum in the most desired point (100% of true positives

and 0 false positives) and variance equal to 15% true positives and 2.2 false

positives.

In order to end the evolution of the population we choose the following termi-

nation criterion: we stop the evolution when the average of the fitness of the best

six individuals has reached a plateau. The final result of the GA optimization is

the best individual of the last iteration.

3.2 Implementation

The GA supervises the executions of an existent “basic program”, which solves

the domain problem and provide fitness evaluation. In the sequential program,

the fitness evaluation step is computed independently for each individual of the

population, by means of a for loop. We have one more loop that is innate in

the “basic program” (the detection algorithm), which performs the detection

scheme described in Sect. 2 over a whole database of mammographic images:

the evaluation of one individual so requires the independent execution of the

detection program for each image in the database. These loops are exploited in

the parallel development of the algorithm.



282 A. Bevilacqua, R. Campanini, and N. Lanconelli

Global parallelization is one of the most common way to realize a parallel GA.

In global parallelization (see [7]), any individual can mate with any other because

the operators and the evaluation of the individuals are explicitly parallelized,

often by a “master processor” that sends individuals to other processors for the

evaluation and applies genetic operator itself. The master program stores the

entire population and performs an iterative decomposition: on each generation

it sends a fraction of the population (one or more individuals) to each slave

processors and waits results from the slaves to come back.

Slaves are self-scheduled, they ask the master for more work as their task

ends. This algorithm behaves in a synchronous manner, since the master waits

to receive the fitness values for all the individuals, before proceeding into the

next generation. Once all individuals have been computed, the master performs

replacement, crossover and mutation operations to create a new generation. In

this way, the GA operations keep global and the existing design guidelines for

simple (sequential) GAs are directly applicable.

In our GA, individuals are short strings of bytes and they are not time

consuming, from a communication point of view. For this reason, the data par-

allelism of the detection algorithm can be exploited too. We recall that in the

sequential algorithm an individual processes a whole images database. The eas-

iest distributed implementation is to let an individual to sequentially process

the entire set of images too. In this way, for each generation the program waits

for the slowest slave to end its computation: in the worst case this time is the

one necessary to process a database. Thus we create a new item, named chunk,
which is constituted by an image identifier and by an individual. In this way,

it is not necessary that one slave compute a whole database, but this task may

be assigned to different slaves. Therefore, the master program sends a chunk,

instead of one individual, every generation to each slave process, which sends

back results and the individual identifier. In this way, the maximum idle time of

the program shrinks from the time needed for computing a whole database to

the time to compute one image. Here we use a modified version of the manager-

workers paradigm, the “working-manager” model defined in [8], in which the

manager uses its idle time to process data itself, by so increasing the overall

performance.

4 Results

4.1 The Analysis of Performance

NOWs are cluster of workstations with quite slow communication links, that

anyway can be suitable for a large number of applications. In addition, small

Symmetric MultiProcessor (SMP) systems can be found within many of the

modern computers which may lead to a powerful distributed computer if con-

nected to each other.

The cluster we used is a heterogeneous computers network consisting of

6 workstations (10 computing nodes), connected to a LAN by a 100 Mbit
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Ethernet. Workstations are listed below, according to their performance on the

sequential algorithm:

W1) 1 PentiumIII 450Mhz, 512MB RAM;

W2) 1 SMP: 2 PentiumIII 450Mhz, 256MB RAM;

W3) 1 SMP: 2 PentiumII 450Mhz, 512MB RAM;

W4,5) 2 SMPs: 2 PentiumII 400Mhz, 512MB RAM;

W6) 1 Mobile PentiumII 366Mhz, 128MB RAM;

We adopt static mapping and do not introduce any virtual parallelism degree,

by assigning one task to each processor, for a total amount of 10 processes.

All the code is written in C, Linux is the operating system, PVM libraries

supply the communication routines and gcc is the C compiler.

Each population is constituted by 30 individuals, and each generation re-

quired 27 individuals to be computed. Each generation takes about 1 h of elapsed

time to be calculated on this cluster.

We get both CPU time and wall clock time measures necessary to obtain

final results. This data parallel application has a very coarse grain structure

and in addition small amount of data are transferred when communication takes

place. For this reason, time due to communication between master and slaves is

irrelevant and it has not been considered.

We then focus our attention on the “weighted” efficiency (Fig. 1) of each

workstation:

W2 W W W W W3 4 5 1 6
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Fig. 1. The “Weighted” efficiency of each workstation

Effi =
Si

Ii
(1)

where Si and Ii are the relative speedup and the “ideal” (theoretical) speedup,

respectively. Si is defined as:

Si =
Ts(Wi)

Tp
(2)
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where Ts(Wi) is the time it takes to the sequential algorithm on the workstation

Wi, and Tp is the time of the parallel algorithm. Finally, Ii:

Ii =
PT

Pi
. (3)

Here, Pi=Ts(W1)/Ts(Wi) is the power weight of Wi compared with that of the

fastest workstation W1. PT is the power weight of the whole cluster and its value

is obtained by summing over all Pi.

We observe how the intrinsically parallel nature of this problem has been

successfully exploited, by dividing original data in chunks. We obtain excellent

results in term of efficiency, if we consider CPU time. Experiments showed a

mean idle time value of about 10 sec.

Regarding with the time needed to read images, it would be quite significant,

since images are only local to W3. Each image (8 MB) takes about 1.5 sec to be

read, and for each generation 27 × 40 images should be read. This sequential

step causes a loss in terms of efficiency, even if we tried to keep in memory a few

images, and it becomes more visible if we consider wall clock time.

4.2 Experimental Results

The main goal of the present study is to show that the performance of our CAD

detection scheme improves due to the optimization based on the GA. To this
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Fig. 2. FROC of the detection methods on the 40 images (Nijmegen) database

end we depict in Fig. 2 two FROC curves: one related to the “hand tuned”

method and one for the optimized one. The optimized curve is derived from the

best individual, by varying the value of the parameter p1. Both the curves are

obtained on the entire database of 40 images: here we do not divide the data into

training and test groups, rather we use all the images for training and testing. We

can see that the sensitivity of the optimized scheme is always greater than in the



A Distributed Genetic Algorithm 285

“hand tuned” case. The GA allows to outperform the previous method of some

percents. Even if at first look it could seem a slight improvement, nevertheless

this is extremely important because here it is necessary to minimize the losses

of clusters of microcalcifications, maintaining at the same time a low rate of

false alarms. Indeed, to avoid any losses of suspect cases is a vital point in issues

regarding the detection of lesions for early breast cancer diagnosis; therefore, any

little step towards a sensitivity of 100% is crucial. The best solution obtained

by the GA is an individual with a fitness value of 0.827, which corresponds to

94.3% of true clusters with 0.47 false positives per image. To obtain these results

we utilize uniform crossover pCO=0.8 and pMUT =0.1. The convergence of the

GA evolution has required the computation of 1974 individuals, corresponding

to 73 generations: it took roughly 3 days (76 h) on our NOW. Let’s take a

look at the peculiarity of the best individual: focusing our attention on its genes

values, we can find out the differences between them and the parameters values

of the “hand tuned” results. We can notice that these changes reduce the range

of the values which identify the true signals. In particular, regarding the coarse

method, the ranges of area, gray level, edge gradient and degree of linearity

are narrower than those achieved in the “hand tuned” study (e.g. the minimum

area of signal increases from 3 to 5 pixels, whereas the maximum area decreases

from 30 to 22). In Fig. 3 it is possible to observe a similar effect about the fine

method. There are plotted the curves, described by parameters p1 and p2, which

separate true signals from false detections. Signals above the curve are kept,
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Fig. 3. Scatter plot of edge gradient versus gray level. The two curves, described by p1

and p2, separate false signals from true ones

while signals below it are eliminated. Also in this case the GA is more selective

in maintaining true signals: if a signal has a given gray level, the GA keep it

only if the edge gradient is higher, with respect to the “hand tuned” case. We

can therefore summarize that the GA optimization tends to restrict the range of
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the features, which characterize the true signals. That allows to cut the number

of false positive signals, without losing too many true ones.

Another issue investigated is how the parameters values fluctuations influ-

ence the performance of the CAD system. Starting from the best individual we

vary the value of the first gene around its best value (the one discovered by

the GA), keeping the other genes fixed. The variation of the parameter ranges

around ±50% its best value. We repeat this process for all the genes, each time

maintaining the other values fixed at their best solution. In this way, we can see

which parameter more affect the fitness value.
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Fig. 4. Variation of fitness due to the change of parameters p1 and p2, with the other

parameters fixed at their best values

In Fig. 4 we can see an example of how the fitness changes, due to the

variation of p1 and p2 separately. We notice that p1 is a very significant param-

eter, because the fitness goes to zero, with a modification of p1 of only ±30%

around its best value. It turns out that the k value for local thresholding (coarse

method), p1, p2 and the maximum of the degree of linearity (fine method) are

the most significant parameters. A little fluctuation of their values indeed im-

plies a rapid fall of the fitness. On the other hand, there are some genes which

do not affect the value of the fitness. They are, in particular: the maximum of

the edge gradient, the minimum and the maximum of the average local gradi-

ent, ct31 and ct32 for the coarse method and p4 for the fine method. A variation

up to 50% of them around their best value does not imply any change in the

fitness value. This fact has allowed us to perform an optimization without these

parameters (keeping them fixed at their best value). With this reduced set of

parameters (23 genes instead of 29) we obtain the same results of those cited

above (fitness value of 0.827), by analyzing only 1623 individuals instead of 1974

(60 generations instead of 73).
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5 Conclusion

We have been developing a Computer Aided Diagnosis system for the detection

of clustered microcalcifications in digital mammograms. The performance of the

system strongly depends on the settings of a set of several parameters. The goal

of the present research is to optimize those parameters, in order to restrict the

range of the features, which characterize the true signals, allowing the cut of the

number of false alarms, without losing too many true signals detected. In an early

version, this task was performed manually, and it took to us a very long time. In

this paper, we presented an heuristic approach to this optimization problem by

means of a distributed genetic algorithm. We have obtained better results in few

generations, which correspond to a really short interval time. Finally, we have

been able to discover the most significant parameters, being those that more

affect the cost function.

Notes and Comments. Images were provided by courtesy of the National Ex-

pert and Training Center for Breast Cancer Screening and the Department of

Radiology at the University of Nijmegen, the Netherlands.
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