
Semi-automated scar detection in delayed enhanced cardiac

magnetic resonance images

Rita Morisi

IMT Institute for Advanced Studies

Piazza S. Ponziano, 6, 55100, Lucca, Italy

Dipartimento di Fisica e Astronomia

Alma Mater Studiorum, University of Bologna

Viale Berti-Pichat 6/2, 40127 Bologna, Italy

Bruno Donini and Nico Lanconelli*

Dipartimento di Fisica e Astronomia
Alma Mater Studiorum, University of Bologna

Viale Berti-Pichat 6/2, 40127 Bologna, Italy
*nico.lanconelli@unibo.it

James Rosengarden, John Morgan and Stephen Harden

University Hospital Southampton NHS Foundation Trust

Tremona Rd, Southampton SO16 6YD, UK

Nick Curzen

University Hospital Southampton NHS Foundation Trust

Tremona Rd, Southampton SO16 6YD, UK

Faculty of Medicine University of Southampton

Tremona Rd, Southampton SO16 6YD, UK

Received 3 April 2014

Accepted 26 May 2014

Published

Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely de-

lineate myocardial scars. We present a semi-automated method for detecting scars in cardiac

MRI. This model has the potential to improve routine clinical practice since quanti¯cation is not

currently o®ered due to time constraints. A ¯rst segmentation step was developed for extracting
the target regions for potential scar and determining pre-candidate objects. Pattern recognition

methods are then applied to the segmented images in order to detect the position of the myo-

cardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of

111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS
Foundation Trust (UK). At least one scar was present for each patient, and all the scars were

manually annotated by an expert. A group of images (around one third of the entire set) was

used for training the system which was subsequently tested on all the remaining images. Four
di®erent classi¯ers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN),
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Bayesian and feed-forward neural network) and their performance was evaluated by using Free

response Receiver Operating Characteristic (FROC) analysis. Feature selection was imple-

mented for analyzing the importance of the various features. The segmentation method pro-
posed allowed the region a®ected by the scar to be extracted correctly in 96% of the blocks of

images. The SVM was shown to be the best classi¯er for our task, and our system reached an

overall sensitivity of 80% with less than 7 false positives per patient. The method we present

provides an e®ective tool for detection of scars on cardiac MRI. This may be of value in clinical
practice by permitting routine reporting of scar quanti¯cation.

Keywords: Image processing; computer aided detection; support vector machine.

PACS Nos.: 87.61.Tg, 87.85.dq.

1. Introduction

Magnetic Resonance Imaging (MRI) has long been used for imaging of the brain,

spine and joints. Over the past decade, MRI has proven useful in diagnosing and

improving the analysis of cardiovascular diseases. In particular, cardiac MRI is one of

the emerging technologies in the noninvasive assessment of the function and struc-

ture of the cardiovascular system. Cardiac Magnetic Resonance (CMR) images

provide clinicians with a detailed picture of the heart, and quantitative information

about cardiac physiology can be derived directly from the images. Speci¯cally, CMR

allows quantitative assessment of functional parameters such as wall motion, wall

thickness and ejection fraction.

The presence of scar tissue within the myocardium is clinically signi¯cant. For

example ¯brosis can be seen in disorders such as hypertrophic cardiomyopathy and

in¯ltrative disorders, or secondary to ischemic injury where it indicates infarct.

Furthermore, recent studies have indicated the existence of a clear relationship

between myocardial scars and ventricular arrhythmia.1–4 The presence of this kind of

¯brotic tissue can act as a substrate for both tachy- and brady-arrhythmias.5 In

addition, the extent and distribution of scars may in°uence critical decisions in the

clinical management of patients such as indications for revascularization, ablation

for ventricular tachycardia and resynchronization therapy.6 In this context, it could

be useful to develop methods which were able to analyze left ventricle scars, in order

to identify individuals at high risk of sudden cardiac death.

Late gadolinium Enhancement (LE) through CMR has emerged as the gold

standard technique for the imaging of myocardial scars. In normal myocardium the

concentration of gadolinium is low, whereas it increases in scar tissue, giving rise to

hyper enhancement of a®ected areas. With respect to the surrounding living tissues,

this appears as an area of high signal intensity.5,7,8

Current methods for the quanti¯cation of hyper enhancement images are slow

and demand a lot of manual tracing across multiple slices. This requires both skill

and time and it is therefore not done in routine clinical practice. This time-consuming

task can be supported, simpli¯ed and accelerated by providing the clinicians with

software which was able to analyze and collect parameters about heart function and
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to determine the presence of myocardial scars. Software programs can also enable the

measurement of a scar and peri-infarct zone by evaluating the signal intensity.

In this paper, we present a semi-automated method for detecting myocardial scars

in CMR images. This algorithm is based on a model of scars comprising a set of

features such as shape, size, brightness, contrast, etc. Scars are then isolated by using

a classi¯er acting on the extracted features. The software is trained once with a

suitable training set containing examples of lesions. Each example consists of an

annotated image, with the description of the location and the contour of the scar.

Once the location of the scars is indicated by our algorithm, this information can be

used to help cardiologists in determining the position of the scar, or can be supplied

as initial seed to a program that will realize a ¯ne segmentation of the scars and the

quantitative estimation of some important parameters.

2. Materials and Methods

A multi-step sequential °ow consisting of three basic steps characterize the proposed

method: extraction of the target region for potential scar, segmentation of all the

objects located in that region and their ¯nal classi¯cation as scar or no-scar.9 Our

method is applied to all the 2D slices of each patient, one slice at a time.

2.1. Database

The database considered for training and testing our algorithm is composed of

images acquired from 63 patients at the University Hospital Southampton NHS

Foundation Trust (UK). All scans were performed with a dedicated 1.5–T Avanto

MRI system (Siemens Medical Systems, Erlangen, Germany). Short-axis LE-CMR

were acquired using a 3D segmented inversion recovery fast gradient echo sequence

in two breath holds. For each breath hold, a block composed of usually 12 slices was

acquired, giving rise to a total of 111 blocks. Most of the 2D slices have 256� 200

pixels, with some exceptions, and the planar spatial resolution is 0.5mm per pixel for

the majority of cases, whereas the slice thickness is 4mm. At least one left ventricular

scar is present for all the patients. Each scar was manually annotated by a physician

and the annotations were provided for all the slices containing the scar. Figure 1

shows an example of one block consisting of 12 slices which represents a portion of the

left ventricle.

2.2. Segmentation

The purpose of the segmentation phase is to extract all the objects similar to scars

that will be provided to the classi¯er. To this end, the proposed algorithm ¯rst

determines the target region for potential scars. Subsequently, this region is seg-

mented, and a series of signals is extracted and ¯nally labeled.

First, the segmentation of the blood pool is realized through the use of a starting

point provided by the user. This point must be positioned within the blood pool and
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the user must indicate it for only one of the slices. Starting from this seed, the

segmentation of the blood pool is realized by means of a 3D region growing algo-

rithm: the region covered by the blood pool is thus extracted for all the slices.

We then make use of the segmented blood pool for determining the target region

for potential scars. To this end, a curve indicating the position of the endocardium is

estimated for each slice, through the following actions:

(1) Delineation of 16 di®erent radial pro¯les on each slice, starting from the center of

the blood pool.

(2) Computation of the average gray level (namely T ) of the pixels inside the blood

pool. For each pro¯le, the position of the endocardium is estimated as the ¯rst

pixel with a value lower than T
2 , starting from the center of the blood pool. A

graphical description of these ¯rst two steps is shown in Fig. 2. On the left is an

example of a slice on which one of the 16 pro¯les is drawn, whereas the gray level

of the pixels belonging to that pro¯le is shown on the right.

Fig. 1. LE-CMR study of a patient: in this case a block of 12 slices is shown, representing a portion of the

left ventricle.
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(3) Determination and solving of the critical situations: the absence of a pixel on a

pro¯le with a value lower than the threshold or the presence of a papillary muscle

along the pro¯le, which appears as a dark region within the blood pool. It can

happen that no pixels along the pro¯le present gray values lower than the

threshold T
2 . In this case, the position of the endocardium in that pro¯le is

determined as the largest one between the positions calculated for the two

nearest pro¯les. In Fig. 3, we present an example where in some pro¯les there are

no pixels with gray value below the threshold. The polygon passing through the

16 initial vertices is shown on the left, and the ¯nal polygon obtained by moving

Fig. 3. Estimation of the polygon for determining the endocardium by using the method of the pro¯les

before (left) and after (right) modifying the position of the critical vertices. The annotated scar (ground

truth) is shown in white.

Fig. 2. Example of a pro¯le which intersects the scar with the corresponding plot of the gray level
distribution of the pixels (on the right). Moving from the center of the blood pool, it is possible to notice a

remarkable drop in the pro¯le, after approximately 35–40 pixels.
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the position of some critical points is shown on the right. It is worth noting that a

considerable portion of the scar (shown in white) is not included in the initial

polygon, whereas the ¯nal corrected region includes the majority of the scar.

(4) Computation of an interpolating linear curve, as polygon passing through the

vertices determined as described in (2) and (3). The interpolated curve repre-

sents our estimation of the endocardium.

(5) Determination of a circumference which represents the internal boundary of the

region to be extracted. The radius of this circumference is estimated from the

distance of the centroid of the polygon and the nearest vertex of the interpolated

curve.

Once the target region is determined, an auto local threshold algorithm is applied on

each image for extracting the brightest objects within that region. We chose

Niblack's method,10 in which each pixel belongs to the segmented objects only if its

gray value is greater than ð�þKt � �Þ, where � and � are the average and the

standard deviation of the gray distribution of the pixel's neighbors and Kt is

the value of the threshold, respectively. The choice of Kt is important in preserving

the shape of the segmented objects: it is essential to extract objects not too small and

with a conformation similar to the shape of the scar.

2.3. Scar classi¯cation

The classi¯cation step aims to identify the segmented objects as scar or no-scar. To

this end, a set of features were calculated for each signal and provided to a classi¯er.

We considered 22 features, 12 related to the shape and geometry of the objects and

10 based on gray levels: 9 of the latter were computed by means of statistical

descriptors of the gray distribution of the objects.

The ¯rst four gray level features were the mean, the standard deviation, the

kurtosis and the skewness. Further four (e.g. energy, contrast, homogeneity and

correlation) were statistical features connected to the image texture. These features

were calculated according to the description reported in the literature and recently

used in similar classi¯cation tasks.11,12 In particular, we created the gray level

co-occurrence matrices by using four directions (0�, 45�, 90� and 135�) and three

distances (1, 3 and 5 pixels). Another feature considered is the entropy, which gives a

statistical measure about the randomness of the distribution of the pixels. The last

feature based on gray values is a measure of the contrast of the object, estimated as

the di®erence between its average gray level and the average of its background.

The remaining 12 features based on the shape of the objects are:

(1) the area and the perimeter of the objects;

(2) the dimensions of the bounding box ;

(3) the major and minor axis length and the eccentricity of the ellipse that has the

same second central moment of the item;

(4) the convex area and the solidity related to the number of pixels of the minimal

convex set that contains the connected points that make the object;
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(5) the Euler number, related to the number of holes presented in a signal;

(6) the equivalent diameter of the circle with the same area of the region;

(7) the scar rate, which corresponds to the ratio between the areas of the object and

the region de¯ned by the segmentation step shown in the previous section.

We used the entire set of features for training and testing four di®erent classi¯ers: a

k-nearest neighbor (KNN), a neural network, a Bayesian classi¯er and a Support

Vector Machine (SVM). In particular, we choose a feed-forward neural network with

¯ve hidden layers, while, for the KNN, we ¯x k ¼ 5 and the Euclidean distance as the

metric to evaluate the distance between the objects. We also used a quadratic

Bayesian classi¯er with uncorrelated normal densities, and an SVM with polynomial

kernel of second degree.

We then applied a feature selection algorithm to select the most important fea-

tures, and potentially improve the generalization accuracy.13 The evaluation func-

tion chosen to select the di®erent characteristics is the Mahalanobis distance, used as

metric to compute the distance between the two classes.13

2.4. False positive reduction

The goal of the ¯nal step is to reduce the number of false positive objects, rejecting

signals classi¯ed as scars, by means of geometric considerations. Since the scars are

located on the myocardium in the proximity of the blood pool, they are usually

characterized by a curved shape with the convexity facing the blood pool. Given that

some of the detected signals present an outward-facing convexity, we developed a

method able to identify such signals. First, the skeleton of each signal is computed,

and then the longest path which connects the vertices of the skeleton just determined

is computed, by using the Dijkstra's algorithm.14 The middle point of the path is

then determined and its distance from the center of the blood pool (named d1) is

Fig. 4. Example of a signal with the convexity outward-facing rejected by our algorithm. Left: image with

the scar shown in white. Center: results of the segmentation process. Right: object rejected by the false

positive reduction step.
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calculated. Finally, by comparing d1 with the distance d2 between the center of

the blood pool and the segment with vertices the extremities of the skeleton, each

signal with d2 > d1 is rejected, because it represents an object with an outward-

facing convexity. Figure 4 shows an example of the false positive reduction (FPR)

algorithm.

3. Results and Discussion

3.1. Segmentation

The segmentation process was developed and initially tested by using a small subset

of the database: we used 30 blocks of images, less than 30% of the available database.

Figure 5 shows some examples where the regions which can contain the scars are

determined. The boundary of the endocardium is well approximated by the polygon

drawn by using as vertices the points on the pro¯les. Anyway, the problem related to

the presence of papillary muscles still occurs in some cases. For instance, in the 7th

and 8th slice of the second block of images the papillary muscle inside (dark region in

the upper-left part of the blood pool) is not included in the extracted endocardium,

since in these slices the estimation of the point along the pro¯le is positioned on the

inner contour of the muscle. In general, it is quite di±cult to model and adapt the

curve in order to include these muscles inside the drawn curve. Di®erent methods

which make use of morphological connected operators (area-open and area-close

¯lters) have been developed to solve this problem.15,16 By evaluating the blocks of

images presenting papillary muscles, in 74% of all cases our method is able to rear-

range the polygon determining a more accurate conformation of the endocardium.

Although the segmentation of CMR images is in general a challenging task, as stated

elsewhere,17 our algorithm is able to precisely delineate the endocardium inclusive of

the scars in nearly all the cases. Indeed, in 96% of cases (i.e. patients) of the entire

database, the segmentation step is able to determine a region which contains the scar

in at least one slice per block. This means that the segmentation is responsible for

only a 4% loss in the detection e±ciency of the scars. After this ¯rst phase we applied

the auto-local threshold algorithm to the determined region. The signals extracted

from the images illustrated in Fig. 5 are presented in Fig. 6 (in white), together with

the ground truth (in red). The data shown in Fig. 6 are obtained by using a Kt value

of 0.6. It is worth noting that the items located on the same position of the scar

preserve a conformation similar to the shape of the scarred tissue.

In order to choose the optimal auto-local threshold parameters, we made a ¯rst

brief comparison between the results obtained with di®erentKt values by means of a

visual assessment of the segmented objects. Figure 7 shows the 7th slice of the second

patient presented in Figs. 5 and 6 and the segmented images obtained by applying

the auto-local threshold method with a value of the threshold equal to 0.8 (second

picture from the left), 0.45 (third from the left) and 0.6 (the last on the right). From

this example, we can see that a Kt value of 0.8 creates small objects and the
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Fig. 5. Examples showing the extracted regions where the scar (shown in white) is supposed to be

located. It is worth noting that the scar is always within the considered regions. The two blocks belong to
two di®erent patients.
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Fig. 6. (Color online) Signals segmented after the application of the auto-local threshold algorithm with

Kt ¼ 0:6 (shown in white). They are compared to the ground truth manually annotated by doctors, shown

in red.
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extracted signals can lose their peculiar shape, causing a more demanding subsequent

pattern recognition task. Yet, setting the threshold parameter to 0.45 would generate

a lower number of signals, since in general most of these are connected to each other.

With these results a signal corresponding to the ¯brosis could be too large and it may

cause problems for the detection of the precise position of the scar. We believe that

the Kt parameter set to 0.6 represents a valid tradeo® between the two situations.

Furthermore, we will present in the next section a more accurate investigation of the

Kt parameter after having applied the classi¯ers to the segmented objects. In that

context, a further assessment will be made by analyzing the performance of the

classi¯ers.

3.2. Classi¯cation

The entire database consisting of 111 blocks was used for training and testing the

algorithm: 37 blocks for the training phase and the remaining 74 for the test. The

training of each classi¯er was repeated ¯ve times, randomly selecting each time 37

blocks as training set and using the remaining 74 blocks for the test. We then

averaged the results over the ¯ve testing groups, in order to give the average per-

formance. The ground truth manually annotated by the clinicians was used to create

the two classes (scar and no-scar) for the training set. To this end, the measure of the

overlap between the scars and each segmented signal is computed for assigning all

the signals of the training set to one of the two classes. The overlap is de¯ned as the

ratio between the intersection and the area of the smallest object between the two: if

we denote by AGT the area of the ground truth and by AS the area of each signal, the

overlap is then estimated as:

Overlap ¼

AGT \AS

AGT

if AGT < AS;

AGT \AS

AS

otherwise:

8>>>><
>>>>:

ð1Þ

Fig. 7. Output comparison using three di®erent values for Kt: 0.8 (second picture from the left), 0.45
(third from the left) and 0.6 (last picture on the right).
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All the objects with an overlap with the scar greater than 40% are considered scars,

while signals with an intersection less than 5% are labeled as no scar; all the other

items are not considered in the training phase. In this way, the training set consists of

3800 signals, of which 15% are scars.

During the test, the output of the classi¯er was evaluated on a set composed of

about 6500 signals. The objects classi¯ed as scar with an intersection with the ground

truth greater than 20% are considered true positives, while the others are evaluated

as false positives. The performances of the di®erent classi¯ers were compared by

means of Free response Receiver Operating Characteristic (FROC) curves. The

sensitivity and the number of false positives are calculated on a per block basis (i.e.

the false positives are reported as the average for the block and for each block a true

positive is scored if in at least one slice a signal overlaps the scar with an intersection

greater than 20%). The results obtained with the four classi¯ers using the entire set

of 22 features and on the same training and test set are presented in Fig. 8. From this

plot, it is clear that the SVM is able to provide the best outcomes.18 We also checked

the stability of the various classi¯ers with respect to their parameters and how their

performance is a®ected by the size of the training set. Tables 1 and 2 show the

outcomes of the four classi¯ers achieved after changing their parameters and the

dimension of the training set, respectively. In this case, we evaluated the perfor-

mances through the area under the FROC curve, estimated in the range between 2

and 15 false positives.

From Table 2, it is possible to infer that the neural network and the SVM are

more sensitive than the other classi¯ers to the dimension of the training set.

In addition, by changing the di®erent probability distribution for the Bayesian

classi¯er, the outcomes obtained with this system present remarkable di®erences: it

Fig. 8. FROC curves estimated on the test set for the four considered classi¯ers.
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reveals that it is very sensitive to the choice of its parameters. The uncorrelated

Bayesian classi¯er achieves better results than the linear and the quadratic one. On

the contrary, by changing the kernel function for the SVM similar results are

achieved. Concerning KNN, Tables 1 and 2 reveal that this classi¯er is relatively

stable and not very sensitive to changes in the parameters and dimension of the

training set, but it provides worse results than those obtained with the SVM. We

thus chose the SVM as classi¯er because of the best tradeo® achievable between its

performance, stability, and dependence of the size of the training set, and we used

this machine for the subsequent analysis.

We then realized a further investigation on the choice of the Kt parameters, after

the visual assessment already achieved in the previous subsection. Table 3 and Fig. 9

show the results obtained with three di®erent values of the Kt parameter: 0.45, 0.6

and 0.8. Although from Table 3, we can notice that the best performance is obtained

by using Kt ¼ 0:45, we decided to use the value 0.6 because the signals extracted

with this threshold have a shape more suitable to represent the scars. From Fig. 9, it

is clear that with Kt ¼ 0:45, SVM labels as true positive a signal too large compared

to the real scar, shown in red in the picture. This could create problems for the

detection of the ¯brosis, because in this way it could be di±cult to ¯nd the exact

Table 1. Comparison between the areas under the FROC

curves calculated by changing the parameters of the classi¯ers.

Classi¯ers Parameter Area

SVM pol 1st degree 13.1� 0.1

pol 2nd degree 14.2� 0.1

homogeneous 2nd degree 13.9� 0.1

Neural network 1 hidden layer 12.2� 0.1
3 hidden layers 12.3� 0.1

5 hidden layers 13.5� 0.1

Bayesian classi¯er uncorrelated 12.2� 0.1

linear 8.1� 0.1

quadratic 9.1� 0.1

KNN 5 neighbors 11.1� 0.1
3 neighbors 10.2� 0.1

9 neighbors 10.1� 0.1

Table 2. Comparison between the areas under the FROC

curves calculated by changing the dimension of the training set.

Classi¯ers 1500 signals 2500 signals Entire set

SVM 12.7� 0.1 13.4� 0.1 14.2� 0.1

Neural network 10.5� 0.1 12.8� 0.1 13.5� 0.1

Bayesian 12.1� 0.1 11.5� 0.1 12.2� 0.1

KNN 9.3� 0.1 11.8� 0.1 11.1� 0.1
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position of the scar on the myocardium. Second, we also tested the output of the

SVM by using a feature selection algorithm, in order to analyze the set of the con-

sidered features. Given that the dimension of the features space is not so high, we

suspected that the application of a feature selection technique would not improve the

performance of the classi¯er. However, such methods could be extremely useful in

determining the most meaningful and important features of the entire set. By ap-

plying the features selection method to the entire set of characteristics, it turned out

that 10 features are selected as the best ones. This subset is made up of 10 features,

six describing the shape of the objects: the two dimensions of the bounding box, the

perimeter and the area of the signal, the major axis length and the scar rate. The last

four features are related to the gray distribution: the average gray level, the kurtosis,

the homogeneity and the contrast of the object. Concerning the values related to the

shape of the items, it is clear that some of them are irrelevant. For example, the three

parameters of the ellipse with the same second central moment of the object give

redundant information, because they are strictly related to each other. Only one of

these values was chosen by the feature selection method. The performances achieved

by the SVM with the entire set of features and the subset chosen by the feature

selection method are presented in Fig. 10. It is worth noting that the outcomes

Fig. 9. (Color online) Outcomes obtained with the SVM applied to segmented images with di®erent Kt

parameters: 0.8 (left), 0.45 (middle) and 0.6 (right). The true annotation is shown in red.

Table 3. Number of true positives (TP) and false positives

(FP) detected by the SVM classi¯er on objects segmented

with three di®erent values of the Kt parameter.

TP FP�Kt ¼ 0:8 FP�Kt ¼ 0:45 FP�Kt ¼ 0:6

68% 3.5� 0.2 4.0� 0.2 4.1� 0.2

72% 4.5� 0.2 4.7� 0.2 4.9� 0.2
80% 6.5� 0.3 5.4� 0.2 6.8� 0.3

82% 10.2� 0.3 6.3� 0.3 7.3� 0.3

84% 10.5� 0.3 6.8� 0.3 7.5� 0.3
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obtained with the features subset do not change signi¯cantly. This means that with

less than half features, the classi¯er is able to achieve a performance comparable to

that obtained with all the characteristics. It is also true that for our study the feature

selection algorithm does not improve the performance of the classi¯er, because our

features set is relatively small and not particularly complex. Regardless, it was

helpful to determine the minimal number of features that can guarantee similar

performance of the classi¯er. This technique was then useful in eliminating redun-

dant features and helped to get a better understanding of the most important ones.

Finally, we tested the e±cacy of the FPR method, based on the determination of

the outward-facing convexity of the objects labeled as scar by the SVM. The im-

provement on the performance of the classi¯er is shown in Table 4. It is worth noting

that the FPR is able to slightly decrease the number of false positives, without losing

any true positive.

Fig. 10. Comparison of the performances of the SVM using the entire features set and a reduced set
obtained with a features selection method. No clear advantage is noticeable in using the entire set of

features.

Table 4. Number of true positives (TP) and

false positives (FP) detected by our system
before and after applying the FPR technique.

TP FP before FPR FP after FPR

66% 4.1� 0.2 3.9� 0.2
72% 4.9� 0.2 4.7� 0.2

77% 6.1� 0.2 5.9� 0.2

80% 6.8� 0.3 6.5� 0.3
84% 7.5� 0.3 7.2� 0.3

88% 10.5� 0.3 10.0� 0.3
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By changing the ¯nal threshold of the classi¯er, it is possible to change the

working point of the entire system (i.e. the sensitivity and the number of false

positives). The choice of the most suitable working point is connected to how one

decides to use the outcomes of the presented method. For instance, if the outcomes

are going to be presented to a physician, probably it is better to produce outcomes

with lower number of FPs, since a large number of false signals could disturb the

viewing of the images. On the other hand, if we intend to use the outcomes as initial

seed to a further program that will realize a re¯ned segmentation of the scars, in this

case it could be better to increase the e±ciency.

4. Conclusions

In this paper, we presented a semi-automated method for myocardial scars detection

applied to LE-CMR images. The segmentation step provides a 96% e±ciency in

including the scar inside the region extracted to be further analyzed. In other words,

only in 4% of the blocks do we lose the possibility of detecting the scar in the ¯rst

segmentation phase. It is worth noting that the segmentation phase is demanding

also because of the quality of the images. Some are noisy, whilst in other cases the

boundary of the myocardium is not well de¯ned, or easily distinguishable. The

analysis of various classi¯ers indicated that the best tradeo®, in terms of sensitivity,

stability and dependence on the size of the training set was obtained with the SVM.

With this classi¯er we reached an overall sensitivity of 80% with less than 7 false

positives per patient. The feature selection method allowed us to halve the number of

the initial features, without degrading the performance of the system. The analysis of

the various features revealed which are the most important to be considered for the

scar detection. Finally, the FPR method has demonstrated to be able to distinguish

some false positives by evaluating their shape. In general, by applying this technique,

the amount of false positives decreases by 0.5 false positives per block, keeping the

same sensitivity.

While additional improvements are still needed, the method applied so far has

already provided valuable and satisfactory results, which can lead to a signi¯cant

step forward in the research on cardiac diseases. Further re¯nement of this method

may lead to a tool that is valuable in routine clinical practice.
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