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The classification of tumoral masses and normal breast tissue is targeted. A mass detec-
tion algorithm which does not refer explicitly to shape, border, size, contrast or texture
of mammographic suspicious regions is evaluated. In the present approach, classification
features are embodied by the image representation used to encode suspicious regions.
Classification is performed by means of a support vector machine (SVM) classifier. To
investigate whether improvements can be achieved with respect to a previously proposed
overcomplete wavelet image representation, a pixel and a discrete wavelet image repre-
sentations are developed and tested. Evaluation is performed by extracting 6000 suspi-
cious regions from the digital database for screening mammography (DDSM) collected
by the University of South Florida (USF). More specifically, 1000 regions representing

biopsy–proven tumoral masses (either benign or malignant) and 5000 regions represent-
ing normal breast tissue are extracted. Results demonstrate very high performance levels.
The area Az under the receiver operating characteristic (ROC) curve reaches values of
0.973 ± 0.002, 0.948 ± 0.004 and 0.956 ± 0.003 for the pixel, discrete wavelet and over-
complete wavelet image representations, respectively. In particular, the improvement in
the Az value with the pixel image representation is statistically significant compared to
that obtained with the discrete wavelet and overcomplete wavelet image representations
(two–tailed p–value < 0.0001). Additionally, 90% true positive fraction (TPF) values are
achieved with false positive fraction (FPF) values of 6%, 11% and 7%, respectively.
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1. Introduction

Breast cancer remains one of the leading causes of death among women from all over

the world1. An early detection of this disease is fundamental in order to increase

the probability for the patient to survive. Screening mammography, namely the

periodical radiographic examination of asymptomatic women’s breast, is undoubt-

edly the most effective tool to this purpose. However, it is known that between

10%− 30% of breast cancers are missed by radiologists during the interpretation of

radiographic images2,3. This is mostly due to subtle nature of mammographic le-

sions, poor image quality, eye fatigue or oversight. In order to increase the detection

rate of breast cancer, computer–aided detection (CAD) systems have been recently

adopted4,5,6. Those automatic systems identify suspicious regions in radiographic

images by means of advanced computer vision and artificial intelligence techniques.

The basic idea behind those systems is to provide the radiologist with a second opin-

ion, but leaving the final decision strictly to him. With this approach, recent studies

demonstrated that CAD systems have a very positive impact on early detection of

breast cancer7,8.

Masses are lesions commonly associated with the presence of breast cancer. They

are thickenings of breast tissue which appear in radiographic images as lesions with

size ranging from 3 mm to 30 mm. In order to detect them, the true majority of

mass detection algorithms follows a two–step approach. First, suspicious regions

are detected on radiographic images by means of traditional image processing tech-

niques, i.e. segmentation, filtering, thresholding, etc. Second, the suspicious regions

detected by the first step are classified as mass or non–mass (normal tissue) by

means of discriminant techniques, i.e. neural networks, linear discriminant analysis,

template matching, etc. The final aim is twofold: (a) to achieve a high true positive

fraction (TPF) value, namely a high fraction of masses correctly classified as masses;

(b) to achieve a low false positive fraction (FPF) value, namely a low fraction of

non–masses incorrectly classified as masses.

The overwhelming majority of the mass detection algorithms so far developed

addresses the second step by extracting features from the suspicious regions iden-

tified during the first step. Typical features refer explicitly to shape, border, size,

contrast and texture of those regions. Thus far, for example, texture features in

combination with linear discriminant analysis have been used by Wei et al.9, thus

achieving a TPF value of 90% and an FPF value of approximately 35%. On the

same dataset, texture features in combination with convolution neural networks

yielded a TPF value of 90% and an FPF value of 31%, as described by Sahiner et

al.10. Features based on geometry, intensity, gray–levels and gradients of suspicious

regions have been investigated in combination with neural networks as well. Tem-

plate matching techniques in combination with different kinds of extracted features

have been discussed by Chang et al., Baydush et al. and Tourassi et al.11,12,13. For

those works, a TPF value of 90% and FPF values of approximately 49%, 14% and

35% have been achieved, respectively.
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However, considering the great variability of masses in shape, border, size, con-

trast and texture, it is often very difficult to get a common set of features effective

for every kind of mass. Motivated by this consideration, our group has proposed a

novel approach to mass detection14 in which classification features are simply em-

bodied by the specific image representation used to encode each suspicious region.

The coefficients resulting from this encoding are directly classified by means of a

support vector machine (SVM) classifier15, an artificial intelligence technique based

on V. Vapnik’s statistical learning theory. The main motivation for using SVM

rather than traditional classifiers relies in its ability in handling very high dimen-

sional feature spaces16. It should be noted that the number of classification features

is generally quite limited in classic approaches. Conversely, for the approach dis-

cussed above, the number of classification features is represented by the amount of

coefficients resulting from each suspicious region, thus much higher. This ability has

been already successfully experimented on CAD issues and biological datasets17,18.

The main purpose of this study is thus to investigate whether similar or better

performances can be achieved with respect to those achieved by the image represen-

tation originally developed, namely an overcomplete wavelet image representation19.

To this aim, pixel and discrete wavelet20 image representations will be developed,

evaluated and compared to the overcomplete wavelet image representation.

2. Materials and methods

2.1. Image database

The mass detection approach is evaluated using suspicious regions extracted from

the Digital Database for Screening Mammography (DDSM) collected by the Uni-

versity of South Florida (USF)21. The DDSM database is comprised of digitized

radiographic images with associated ground truth which gives location, outline and

subtlety ratings for each mass. Radiographic images are digitized with Lumisys

scanner at 50 µm or Howtek scanner at 43.5 µm, both with 12–bit gray–level reso-

lution. From the DDSM cases, a total of 1000 diagnosed masses are extracted using

the provided ground truth annotations. In particular, a square crop centered on the

location of each annotated mass is selected. The size is chosen so that the ratio

between the crop area and the area of the annotated mass is nearly 1.3. All the

crops containing a mass are thus characterized by having about 70% of their area

occupied by the annotated mass and the remaining 30% by background. Note that,

since SVM deals exclusively with dimensionally homogeneous vectors, all the crops

containing a mass have to be resized to an arbitrarily prefixed size of 64×64 pixels.

To this purpose, bilinear resizing has been chosen. On the contrary, for the non–

mass class, a total of 5000 square crops are extracted randomly from the DDSM

normal cases and selected as 64× 64 pixel regions representing normal tissue. The

whole dataset is thus composed of 6000 regions with pixel size 64 × 64, namely a

total of 1000 crops representing benign and malignant masses plus a total of 5000

crops representing normal tissue, see Fig. 1.
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Fig. 1. The two classes. Mass class (top) vs. non–mass class (bottom).

2.2. Image representations

2.2.1. Pixel image representation

The simplest way to encode an image is by just concatenating all its gray–level

intensity values, thus yielding a long vector with as many entries as the number of

pixels in the image. This encoding is usually referred to as the pixel image repre-

sentation of the image under analysis. In the context of image classification, this

approach forces the classifier to discriminate the images under exam by simply using

the information derived from their gray–level intensity values. For the specific clas-

sification problem presented herein, the pixel image representation forces SVM to

learn the typical gray–level intensity content of regions representing tumoral masses

and that of regions representing normal tissue.

When using the pixel image representation, masses and normal tissue are submit-

ted to the classifier as they appear in radiographic images. Masses appear generally

as nucleated objects with quite defined edges, whereas non–masses appear as less

defined and very heterogeneous objects. An exception to nucleated masses is rep-

resented by spiculated masses, namely objects having a star–shaped boundary and

margins with sharp fingers pointing away from the center of the mass. Although

these two families of masses are quite different, common characteristics which differ-

entiate them from non–masses are the tendency to have a fairly sharp boundary and

to appear brighter than surrounding tissue. Given these considerations, a typical

approach would extract few specific features encoding those discriminant character-

istics, precisely the sharpness of the boundary and the contrast with the surrounding

tissue. Conversely, the approach based on pixel image representation simply submits

the gray–level intensity content of each suspicious region to SVM. No a priori infor-

mation is thus introduced, since the identification of the most discriminant features

(i.e. pixels) is completely demanded to the classifier.

2.2.2. Wavelet image representation

In the image processing community, the wavelet transform is a well–known tech-

nique allowing for multi–resolution and multi–orientation image analysis20,22,23.
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Fig. 2. Discrete wavelet image representa-
tion. Detail components up to level three of
a region containing a mass.

Fig. 3. Overcomplete wavelet image rep-
resentation. Detail components up to level
three of a region containing a mass.

Very broadly, this transform encodes the difference in gray–level intensity con-

tent between local regions along different resolutions and orientations of images.

A strong response from the wavelet transform of an image indicates the presence

of an intensity difference at a specific location, typically an edge or a boundary.

On the contrary, a weak response indicates a uniform area. The main motivation

for evaluating the application of the wavelet transform herein is precisely that it

offers a suitable image representation for highlighting shape and detailed structures

of masses at different resolutions and orientations.

The classical wavelet transform, also known as discrete wavelet transform20,

is an orthogonal transform. By using a cascade of low–pass and high–pass filters

together with subsampling operators, it transforms an N×N pixel image into N×N
multi–resolution and multi–orientation wavelet coefficients. The application of each

pair of filters and subsampling operators corresponds to a decomposition level, in

other words to a specific resolution of the analysis. Fig. 2 illustrates the discrete

wavelet decomposition up to level three of a region containing a mass. In particular,

for each level j = 1, 2, 3, the horizontal component dH
j , the vertical component dV

j

and the diagonal component dD
j are depicted. Haar wavelet filters have been used.
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A redundant version of the discrete wavelet transform, commonly referred to as

overcomplete wavelet transform19, is used in order to split the information of the

image on a higher number of wavelet coefficients, thus achieving finer resolutions.

By eliminating the subsampling operators from the first and even decomposition

levels, the low–pass and band–pass images produced by the overcomplete wavelet

decomposition consist of approximately N − 1×N − 1 wavelet coefficients at level

1, N − 2 × N − 2 at level 2, (N − 3)/2 × (N − 3)/2 at level 3, etc. In this way,

the overcomplete wavelet transform provides a higher–resolution encoding of the

image information. Fig. 3 illustrates the overcomplete wavelet decomposition up to

level three of a region containing a mass. In particular, for each level j = 1, 2, 3, the

horizontal component dH
j , the vertical component dV

j and the diagonal component

dD
j are depicted. Haar wavelet filters have been used here as well.

2.3. Classification

2.3.1. Support Vector Machine

SVM15 constructs a binary classifier from a set of l training samples, consisting

of labeled patterns (xi, yi) ∈ RN × {±1}, i = 1, . . . , l. Taking values +1 or −1,

the label yi indicates the class of the pattern xi considered. The classifier aims at

estimating a decision function f : RN → ±1 from a given class of functions, such

that f will correctly classify unseen test samples (x, y). A sample is assigned to

the class +1 if f(x) ≥ 0 and to the class −1 otherwise. When dealing with the

pixel image representation, the feature vector x contains the gray–level intensity

values of each suspicious region. Similarly, when the wavelet image representation

is adopted, it contains the wavelet coefficients resulting from the application of the

wavelet transform to each of those regions.

SVM selects hyperplanes in order to separate the two classes. Among all the

separating hyperplanes, it finds the maximal margin hyperplane (MMH), namely

the one that causes the largest separation in the feature space between itself and

the borderline training samples of the two classes. To this aim, the decision function

is computed as:

f(x) = sgn (w · x+ b) = sgn

(
l∑

i=1

yiαi(x · xi) + b

)
(1)

where the coefficients αi and b are calculated by solving the following quadratic

programming problem:

max
α

l∑

i=1

αi −
1

2

l∑

i,k=1

αiαjyiyjxi · xj (2)

subject to:

0 ≤ αi ≤ C, i = 1, . . . , l (3)
∑l
i=1 αiyi = 0 (4)
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C is a regularization parameter selected by the user. Once the training samples

(xi, yi) are provided, the coefficients αi and b are calculated by solving the quadratic

programming problem discussed above. The separating MMH is obtained by sub-

stituting in Eq. 1 the coefficients αi and b found. The classification of a previously

unseen sample identified by the feature vector x is therefore achieved according to

the values of f(x) in Eq. 1. Note that, since the most part of the coefficients αi are

generally null, only a small fraction of training samples (called support vectors) con-

tributes to the determination of the separating MMH. It turns out that the number

of dot products xi · xj which must be actually computed is sensibly reduced. For

this reason, SVM results to be particularly suited for classification problems with

very high dimensional feature spaces.

When samples are not linearly separable in the feature space, a non–linear trans-

formation φ(x) is used16. The rationale is to map feature vectors into a higher

dimensional feature space where they are linearly separable. With this approach,

classification problems which appear quite complex in the original feature space

can be afforded by using simple decision functions in the mapped feature space, for

instance linear hyperplanes. This point is crucial, since the use of low–complexity

decision functions is fundamental in order to have learning machines with a good

generalization ability. In order to implement this mapping, the dot products x · xi
of Eq. 1 are substituted by the values φ(x) · φ(xi) ≡ K(x,xi), commonly referred

to as kernel functions. Admissible and typical kernels are:

{
K(x,y) = xTy Linear kernel

K(x,y) = (γxTy + r)d, γ > 0 Polynomial kernel
(5)

where γ, r and d are kernel parameters selected by the user.

2.3.2. Performance evaluation

Cross–validation is a common procedure used to train and test a classifier. Given

a n–dimensional dataset D, first the entire dataset is divided into f homogeneous

sub–datasets F1, F2, . . . , Ff , commonly referred to as folds. The classifier is then

trained with the collection of the first f − 1 folds (F1, F2, . . . , Ff−1) and tested on

Ff , namely the fold left over. The procedure is permuted for each Fi, i = 1, . . . , f .

Compared to the holdout method, the major advantage of this technique is that

larger portions of the dataset can be used for training the classifier. Furthermore,

classification performances are estimated as the average error rate over the f test

folds Fi, thus preventing the problems arising from unfortunate splits of the dataset.

As already mentioned, the dataset used in this work is composed of 1000 crops

representing the mass class and 5000 crops representing the non–mass class. With

the purpose of implementing a 10–folds cross–validation procedure, the dataset is

divided into 10 folds, each one containing 100 mass crops and 500 non–mass crops.

For each permutation of the cross-validation procedure, SVM is thus trained with

900 mass crops and 4500 non–mass crops, then tested respectively on 100 and 500.
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Classification performances are evaluated using receiver operating characteristic

(ROC) curves, namely plots of the classifier’s TPF values (y–axis, ranging between

0 and 1) versus its FPF values (x–axis, ranging between 0 and 1). Reasoning in-

formally, one ROC curve results to be better than another if it lies closer to the

upper–left corner. This would mean having higher average TPF values and lower

average FPF values. The most common technique to perform ROC curve analysis

consists in varying the free parameters of the classifier, thus altering the values of

TPF and FPF on the same test set. In this study, ROC curves are calculated by

shifting the MMH found by SVM. This is achieved by changing the threshold b in

Eq. 1. For each choice of b, TPF and FPF values are then computed and plotted.

Furthermore, in order to summarize the classification performances, the area Az
under the ROC curve is employed. Its value ranges between 0 and 1 and can be

interpreted as the average TPF values over all possible values of FPF. It turns out

that one ROC curve results to be better than another if its area Az is greater. The

areas Azs are estimated using the ROCKIT software by Metz et al.24.

2.4. Tests

The image representations discussed above are evaluated stand alone and with the

combined effect of some image processing techniques, namely histogram equalization

and resizing.

Histogram equalization transforms the image gray–level intensity values so that

the histogram of the equalized image matches an approximately flat histogram. The

net effect is to obtain images having higher contrast and exhibiting a larger variety

of gray–level intensity values. This actually results in having crops with enhanced

edges and boundaries.

Image resizing involves the interpolation of image adjacent pixels to estimate

an image with lower dimensions. In this work, bilinear interpolation is used, i.e.

each pixel of the resized image results from a weighted average of the pixels in

the nearest 2–by–2 neighborhood. The resulting crops are characterized by a lower

spatial resolution which supplies an approximate idea about edges and boundaries,

but provides an effective picture of the brightness distribution of the pixels.

A further technique, called scaling, is tested in combination with the aforemen-

tioned ones. It consists of scaling the 2–sigma interval of correspondent features

in the range [0, 1]. Scaling coefficients are calculated for each feature during the

training phase, then are used to scale correspondent features both in the train and

test set. In this work, correspondent features are represented by correspondent pix-

els when evaluating the pixel image representation and by correspondent wavelet

coefficients when evaluating the wavelet image representations. This technique is

very common in the pattern classification community, since it is useful to avoid

that features of greater value dominate those of smaller value. Furthermore, since

classification depends mainly on the inner products of feature vectors, the scaling

technique is useful to avoid numerical difficulties.
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2.4.1. Tests with pixel image representation

Aimed at evaluating in detail the pixel image representation, three main tests are

performed. For the sake of conciseness, they will be referred to as PixS, PixRS

and PixHRS.

First, the pixel image representation is evaluated in combination with scaling

for different SVM kernels, namely linear and polynomial with degree 2 and 3. With

this image representation, SVM is required to classify 64 × 64 pixel crops whose

correspondent pixels are scaled in the range [0, 1]. Being characterized by scaling,

this test will be referred to as PixS.

Second, the influence of image resizing is tested by applying bilinear resizing

to the crops. The original 64 × 64 pixel crops are resized to 16 × 16 by means of

bilinear resizing. Resized crops are then scaled between [0, 1] and finally classified by

using the aforementioned linear and polynomial SVM kernels. Being characterized

by resizing and scaling, this test will be referred to as PixRS.

Third, histogram equalization is evaluated. In particular, the original 64 × 64

pixel crops are all processed by means of histogram equalization. The crops ob-

tained are resized to 16× 16 by means of bilinear resizing, scaled between [0, 1] and

finally classified by using the same SVM kernels. Being characterized by histogram

equalization, resizing and scaling, this test will be referred to as PixHRS.

2.4.2. Tests with discrete wavelet image representation

As far as the discrete wavelet image representation is concerned, two main tests are

performed. They will be referred to as DwtS and DwtHS.

First, the discrete wavelet image representation is evaluated in combination with

scaling for a linear SVM kernel. With this image representation SVM is asked to

classify 4032 wavelet coefficients obtained by applying the discrete Haar wavelet

transform up to level 3 to the crops, extracting the detail components of levels 1,

2, 3 and scaling them in the interval [0, 1]. Being characterized by scaling, this test

will be referred to as DwtS.

Second, the influence of histogram equalization is explored by equalizing crops

before transforming them with the discrete Haar wavelet transform. In particular,

the original 64 × 64 pixel crops are all processed by using histogram equalization.

The crops obtained are transformed by means of the discrete Haar wavelet transform

up to level 3. The detail components of levels 1, 2, 3 are extracted, scaled between

[0, 1] and finally classified by using a linear SVM kernel, as for the first test. Being

characterized by histogram equalization and scaling, this test will be referred to as

DwtHS.

Third, the effects of a different choice for the SVM kernel are evaluated. Other

than for a linear SVM kernel, the discrete wavelet image representations discussed

above are tested for polynomial kernels with degree 2 and 3. These tests are referred

to as DwtHS2 and DwtHS3, the number indicating the degree of the polynomial

kernel used.
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2.4.3. Tests with overcomplete wavelet image representation

Similarly to the discrete wavelet image representation, two main tests are performed

for the overcomplete case. They will be referred to as OwtS and OwtHS.

First, the overcomplete wavelet image representation is evaluated in combination

with scaling for different SVM kernels, namely linear and polynomial with degree 2

and 3. With this image representation the classification features handled by SVM

are 2955 wavelet coefficients obtained by applying the overcomplete Haar wavelet

transform to the crops, extracting the decomposition levels 4, 6 and scaling them

in the interval [0, 1]. Being characterized by scaling, this test will be referred to as

OwtS.

Second, the influence of histogram equalization is explored. In particular, the

original 64× 64 pixel crops are all processed by using histogram equalization. The

obtained crops are transformed by means of the overcomplete Haar wavelet trans-

form. The detail components of levels 4, 6 are extracted, scaled between [0, 1] and

finally classified by using linear and polynomial SVM kernels. Being characterized

by histogram equalization and scaling, this test will be referred to as OwtHS.

3. Results and discussion

As previously mentioned, in order to optimize SVM to the different image represen-

tations, several polynomial kernels (i.e. parameter d in Eq. 5) are evaluated, from

degree 1 up to 3. As regards the other parameters (i.e. parameters γ and r in Eq. 5

and parameter C in Eq. 3) classification performances are found to be almost com-

pletely unaffected by any change on them. For this reason, they are arbitrarily set

equal to unit.

3.1. Results with pixel image representation

For instance, crops resizing has not a tangible effect on classification performances.

This means that the classification results achieved by the scaled pixel image repre-

sentation (PixS) and its correspondent bilinear resized version (PixRS) are almost

the same. This is an important point, since it demonstrates that similar results can

be achieved by using 16× 16 = 256 features instead of 64× 64 = 4096, thus sensi-

bly reducing computational times. Due to the similarity between the performances

achieved by PixS and PixRS, only the ROC curve correspondent to the faster

image representation is thus plotted in Fig. 4, namely the latter. A possible expla-

nation for this result must be searched in that masses are generally characterized

by a brightness distribution of their gray–level intensity values which is peaked in

the center of the region under consideration, whereas non–masses appear as much

more uniform objects. In particular, this heavily discriminant characteristic is quite

insensitive to image resizing, since the peaked brightness distribution of masses and

that much more uniform of non–masses are not sensibly affected by lowering the

spatial resolution.
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Fig. 4. ROC analysis of the pixel image representation. 256 classification features. Linear SVM
kernel.

A further interesting result is that histogram equalization has a very positive

effect on classification performances. The original crops processed by means of his-

togram equalization, bilinear resizing and scaling, in fact, are those achieving the

best classification results. As evident from Fig. 4, the ROC curve correspondent to

this image representation (PixHRS) is significantly better than that correspondent

to PixRS, in particular for FPF values comprised between 1% and 5%. A practical

explanation is that, by enhancing the image contrast, histogram equalization leads

to a more evident separation between the central bright pixels of suspicious regions

containing a mass and the uniform surrounding tissue. In this sense, it goes precisely

in the direction of stressing the aforementioned heavily discriminant characteristic

which differentiate masses from non–masses. Note, by the way, that as for the above

discussed case the number of features here is equal to 16× 16 = 256.

As regards SVM, the kernel which performs globally better is the linear. This is

reasonable. Working with the pixel image representation, correlations among corre-

spondent pixels are much more reliable as features than correlations among distant

pixels25. In the case of linear kernel, in particular, the correlations considered are

precisely those among correspondent pixels. The inner products computed are, in

fact, K(x,y) = (x · y), where x and y are two vectors containing the pixels of two

crops.
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Fig. 5. ROC analysis of the discrete wavelet image representation. 4032 classification features.
Linear SVM kernel. The ROC curve of PixHRS is depicted for comparison purposes.

3.2. Results with discrete wavelet image representation

Again, histogram equalization has a positive influence, although smaller, on

classification performances. As for the pixel image representation, the original crops

processed by means of histogram equalization, transformed by the discrete Haar

wavelet transform and finally scaled are those achieving the best classification results

among the discrete wavelet image representations. This is evident in Fig. 5, where

the ROC curve correspondent to this image representation (DwtHS) is slightly

better than that correspondent to DwtS. The main reason for the weaker impact

of histogram equalization on classification performances is that the discrete Haar

wavelet transform enhances itself edges and boundaries of images. Looking at Fig. 2,

for example, it is evident that discrete wavelet coefficients have a strong response in

presence of gray–level intensity differences, for instance edges and boundaries. This

makes the improvements of histogram equalization inferior with respect to those

reported for the pixel image representation. Note, by the way, that the number of

features is 4032 for both DwtS and DwtHS.

A further interesting aspect is that, contrarily to the pixel image representation,

the SVM kernels which performs globally better are the polynomial with degree 2

or 3, see Fig. 6. Dealing with a wavelet image representation, feature vectors are

represented by a concatenation of detail components. Each pixel of the original

crop is thus represented many times in the feature vectors, namely by one wavelet
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Fig. 6. ROC analysis of the discrete wavelet image representation. 4032 classification features.
Polynomial SVM kernel with degree 2 and 3. The ROC curves of PixHRS and DwtHS are
depicted for comparison purposes.

coefficient in each one of the three detail components. This is repeated for each

decomposition level. It is thus evident that, in this case, correlations among distant

features are important as well as correlations among correspondent features. For

this reason, SVM kernels which address specifically this task, such as the polynomial

kernels with degree 2 or 3 (i.e. K(x,y) = (x · y)2 or K(x,y) = (x · y)3), achieve

better classification performances.

3.3. Results with overcomplete wavelet image representation

Owing to the same reasons discussed for the discrete wavelet image representation,

experiments confirm the importance of choosing polynomial SVM kernels with de-

gree higher than one. By evaluating different SVM kernels, it turns out that the

overcomplete wavelet image representation is best classified by means of polyno-

mial kernels with degree 2. For this reason, the ROC curves plotted in Fig. 7 corre-

spond to tests performed by using this polynomial kernel, respectively OwtS2 and

OwtHS2, the number indicating the degree of the polynomial kernel used.

The influence of histogram equalization on the classification performances, re-

sults contradict somehow what is obtained for the discrete wavelet image repre-

sentation. As evident from Fig. 7, the ROC curve which corresponds to the crops

processed by means of histogram equalization, transformed by the overcomplete
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Fig. 7. ROC analysis of the overcomplete wavelet image representation. 2955 classification fea-
tures. Polynomial SVM kernel with degree 2. The ROC curves of PixHRS and DwtHS3 are
depicted for comparison purposes.

Haar wavelet transform and finally scaled (OwtHS2) is slightly worse than that

corresponding to the crops simply transformed by the overcomplete Haar wavelet

transform and finally scaled (OwtS2). The reason is probably that the combined ef-

fect of histogram equalization together with a redundant wavelet analysis enhances

too much crops, thus encoding in the wavelet coefficients unnecessary and unimpor-

tant image details, for instance noise. As depicted in Fig. 3, in fact, the overcomplete

wavelet coefficients are much more sensitive to gray–level intensity differences than

their discrete wavelet analogous. Note, by the way, that the number of features is

2955 for both OwtS2 and OwtHS2.

3.4. Comparison of the results

The tests discussed above show that PixHRS is the image representation leading

to the best results among all the pixel image representations evaluated, DwtHS3

among all the discrete wavelet image representations and OwtS2 among all the

overcomplete wavelet image representations. To compare quantitatively the best

results obtained for the three image representations tested, Tab. 1 is presented.

Here, other than the values of the area Az under the ROC curves, the FPF values

achieved by PixHRS, DwtHS3 and OwtS2 are reported for 90% TPF values.
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Table 1. Classification results comparison. Az and FPF values achieved by
the best performing image representations.

Image representation # Features Az value FPF for 90% TPF

PixHRS 256 0.973 ± 0.002 6%
DwtHS3 4032 0.948 ± 0.004 11%
OwtS2 2955 0.956 ± 0.003 7%

By comparison, the pixel image representation PixHRS achieves slightly better

classification performances with respect to the others, namely Az = 0.973± 0.002

and 90% TPF values with FPF values of 6%. In particular, the improvement in the

Az value with PixHRS is statistically significant compared to that with DwtHS3

and OwtS2 (two–tailed p–value < 0.0001). The reason is that, by applying his-

togram equalization and resizing, this pixel image representation enhances and ex-

ploits an important characteristic which discriminates suspicious regions containing

masses from those representing normal tissue. As already mentioned, this charac-

teristic is the presence in the most part of suspicious regions containing masses

of a bright center, compared to the more heterogeneous structures characterizing

normal tissue. In this context, the application of histogram equalization enhances

the contrast of the suspicious region under study, thus underlying the separation

between the central bright pixels and the surrounding tissue. At the same time, by

lowering the spatial resolution, image resizing supplies an effective encoding which

preserves the peaked or uniform nature of the brightness distribution.

The overcomplete wavelet image representation OwtS2 achieves slightly worse

performances, namely Az = 0.956 ± 0.003 and 90% TPF values with FPF values

of 7%. If the pixel image representation exploits the gray–level intensity content of

the suspicious regions, the overcomplete wavelet image representation is exclusively

concerned with the difference in gray–level intensity content along different resolu-

tions and orientations of those regions. No direct information about the gray–level

intensity values is used. To some extent, the discriminant characteristic exploited

is exactly the same as for the pixel image representation, however, not the possible

presence of a central bright nucleus is considered, but the possible presence of a fairly

sharp boundary delimiting the mass nucleus. To this aim, the rich spatial resolution

intrinsically assured by the overcomplete wavelet transform is crucial. Differently

from the pixel image representation, where information about the peaked or uniform

brightness distribution can be supplied by a relative low resolution encoding, here

the mass boundary is best identified and enhanced at finer resolutions, see Fig. 3. A

further confirmation for that is represented by the discrete wavelet image represen-

tation DwtHS3. Even though without achieving statistical significance, however

its classification performances are slightly inferior to those described for OwtS2,

namely Az = 0.948±0.004 and 90% TPF values with FPF values of 11%. The main

reason for that is the lower spatial resolution which characterize this image repre-

sentation. This, in fact, makes more difficult to identify and enhance the possible

boundary delimiting the mass nucleus, see Fig. 2.
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Finally, a key aspect to consider when evaluating the three different image rep-

resentations is the computational time required by each of them for the analysis

of an entire radiographic image. Looking at Tab. 1, it is evident that the number

of features characterizing each image representation is quite different, namely 256

for PixHRS, 4032 for DwtHS3 and 2955 for OwtS2. This different number of

features affects rather sensibly the computational time required by SVM for cal-

culating the dot products in Eq. 1 and therefore assigning a crop to the mass or

non–mass class. On a dual Intel Xeon 2.6 GHz PC, PixHRS takes approximately

5 seconds for the analysis of an entire radiographic image, whereas DwtHS3 and

OwtS2 respectively 1.5 and 1 minutes. It turns out that, other than for its higher

classification performances, PixHRS provides an image representation which is

also much more reliable for real–time CAD implementations.

4. Conclusion

In a recent work14, our group has proposed a mass detection algorithm able to

predict the presence or absence of tumoral masses in mammographic suspicious

regions. With this approach, classification features are embodied by the image rep-

resentation used in order to encode the suspicious regions under study, whereas

classification is performed by means of an SVM classifier.

To investigate whether different image representations can achieve better or

similar results with respect to the originally developed overcomplete wavelet image

representation, two new image representations are tested herein, namely a pixel and

a discrete wavelet image representation. To this purpose, a dataset of 6000 suspicious

regions is collected from the DDSM database, 1000 of these regions being biopsy–

proven benign or malignant masses, whereas the remaining 5000 representing normal

tissue.

As far as the the pixel image representation is concerned, suspicious regions are

encoded in the simplest way, namely by just concatenating their gray–level intensity

values. In particular, best results are achieved by first processing the original 64×
64 pixel suspicious regions by means of histogram equalization, then resizing the

resulting crops to 16× 16 by means of bilinear resizing and finally scaling them in

the interval [0, 1]. The resulting 256 gray–level intensity values are then classified

by means of a linear SVM kernel. By using this image representation, referred to as

PixHRS, 90% TPF values are achieved with FPF values of 6% (Az = 0.973±0.002).

For the discrete wavelet image representation, instead, best results are obtained

by first processing the original 64 × 64 pixel suspicious regions by means of his-

togram equalization, then transforming the resulting crops by using the discrete

Haar wavelet transform, extracting the detail components of levels 1, 2, 3 and finally

scaling them in the interval [0, 1]. The resulting 4032 discrete wavelet coefficients

are then classified by means of a polynomial SVM kernel with degree 3. With this

image representation, referred to as DwtHS3, 90% TPF values are achieved with

FPF values of 11% (Az = 0.948± 0.004).
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Finally, with the overcomplete image representation image representation, sus-

picious regions are encoded by applying the overcomplete Haar wavelet transform,

extracting the detail components of levels 4, 6 and scaling them in the interval [0, 1].

The 2955 overcomplete wavelet coefficients which result from this approach are then

classified by means of a polynomial SVM kernel with degree 2. The results achieved

by this image representation, referred to as OwtS2, show 90% TPF values with

FPF values of 7% (Az = 0.956± 0.003).

The results reported here imply very high classification performances. This is

much more evident when compared to published results from other mass detection

algorithms. In particular, the improvement in the Az value achieved by PixHRS

over that of DwtHS3 and OwtS2 is statistically relevant (two–tailed p–value <

0.0001). Combined with the lower computational times required for the analysis

of an entire radiographic image, these aspects make PixHRS preferable for real–

time CAD applications. Despite of that, we believe that the combination of the

three image representations discussed herein could result very useful in order to

sensibly improve the global efficiency of CAD systems. To this purpose, our efforts

are currently invested in studying feasible strategies aimed at merging the opinion

of each image representation regarding the presence or absence of a tumoral mass

in a mammographic suspicious region.
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