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We have developed a method for the detection of clusters of microcalcifications in digital
mammograms. Here, we present a genetic algorithm used to optimize the choice of the
parameters in the detection scheme. The optimization has allowed the improvement of
the performance, the detailed study of the influence of the various parameters on the
performance and an accurate investigation of the behavior of the detection method on
unknown cases. We reach a sensitivity of 96.2% with 0.7 false positive clusters per image
on the Nijmegen database; we are also able to identify the most significant parameters.
In addition, we have examined the feasibility of a distributed genetic algorithm imple-
mented on a nondedicated Cluster Of Workstations. We get very good results both in
terms of quality and efficiency.
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1. Introduction

Breast cancer is the most common form of cancer among women. The presence

of microcalcifications in breast tissues is one of the main features considered by

radiologists for its diagnosis. In order to reduce detection errors, one of the possible

solutions is to assist doctors with a computer aided system. The computer output

is presented to radiologists as a “second opinion” and can improve the accuracy

in the detection task.1 We have developed a Computer Aided Diagnosis (CAD)
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scheme for detecting clustered microcalcifications in digital mammograms.2,3 Our

scheme contains a large number of parameters such as filter weights, threshold

levels and feature ranges for false-positive reduction steps. The performance of the

system depends strongly on the settings of these parameters. Hence, it is essential

to make an accurate choice of them in order to obtain the best results. The number

of these parameters is large (about thirty) and therefore it is difficult to get the

optimal performance especially since the values of some parameters are correlated

with each other.

In this paper, we present an automated method for the selection of the param-

eter values by means of a genetic algorithm (GA). In a previous study, the selec-

tion was performed manually;2,3 we refer to this procedure as the “hand tuned”

one. GAs have been successfully applied to many diverse and difficult optimiza-

tion problems.4–8 GAs search the solution space to maximize (minimize) a fitness

(or cost) function by using simulated evolutionary operators such as mutation and

sexual recombination. In this study, the fitness function to be maximized reflects

the goal of maximizing the number of true-positive detections while minimizing the

number of false-positive alarms. GA utilization requires the determination of several

issues: cost function design, parameter set representation, population initialization,

choice of selection function, choice of genetic operators (reproduction mechanisms)

for evolution, and identification of termination criteria. In a number of applications

where the search space was too large for other heuristic methods or too complex for

analytic treatment, GAs produced favorable results. Other researchers have shown

that GAs could improve the performance of a CAD scheme.9,10

We will evaluate how the fluctuations in the parameter values influence the per-

formance of the CAD scheme and which parameters affect most the cost function.

Our goal is as well to select, by using a GA, the most significant parameters; we

then can also study easily the effects of additional parameters as they are considered

in the optimization due to the excellent scalability of GAs. It would be impossible

to perform manually these tasks because of the correlations among the parameters.

The GA needs to be run repeatedly in order to obtain a good optimization. Due

to the very long time required for one run, it would be impracticable to execute

the GA on a sequential architecture. We therefore implement a distributed GA on

a Cluster Of Workstations (COWs) by realizing a global parallelized GA. In this

type of parallel GAs, there is only one population as in the serial GA, and even

if the evaluation of individuals is parallelized explicitly, the algorithm remains un-

changed. In this way, we could apply easily the existing principles for sequential

GAs.

We accomplish the optimization of our CAD scheme by using a database of

40 digitized mammograms coming from the Nijmegen hospital: this database is

considered as a benchmark for CAD systems. Performances of the detection scheme

are shown by means of Free Response Operating Characteristic (FROC) curves. A

jackknife statistical test is performed to evaluate the average performance of our
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method on unknown cases. This assessment of a generalization of the CAD scheme

was not feasible previously because of the large amount of time needed for the

manual optimization.

2. Domain Problem: The Detection Scheme

Microcalcifications are very small spots which appear brighter than the surrounding

normal tissue. Typically, they are between 0.1 mm and 1 mm in size and are of

particular clinical significance when found in clusters of five or more in a 1 cm2 area.

Most of the clusters consist of at least one evident microcalcification and other more

subtle signals. Our approach to the detection task includes two different methods:

the first one (coarse) is able to detect the most obvious signals while the second one

(fine) based on multiresolution analyses, discovers less visible microcalcifications.2

Signals coming out from these two methods are combined through a logical OR

operation and then clusterized to give the final result. In both methods (coarse and

fine one), there are some common steps,

• pre-processing which isolates breast tissue,
• filtering in which structured background is removed,

Table 1. Parameters used in the optimization process.

Parameters of the coarse method Parameters of the fine method

Size of the local thresholding window

Threshold for Gaussianity test ht

Values for local thresholding k

Minimum edge gradient (EG)

Maximum EG

Minimum average local gradient (ALG) Minimum neighbor gray level (NGL)

Maximum ALG Maximum NGL

Minimum area of signal Minimum area of signal

Maximum area of signal Maximum area of signal

Minimum gray level (GL) Minimum GL

Maximum GL Maximum GL

Minimum degree of linearity (DL) Minimum DL

Maximum DL Maximum DL

ct11, in: GL > ct11 ∗ EG+ ct12 p1, in: EG < p1 ∗ tanh(p2 ∗GL)
ct12, in: GL > ct11 ∗ EG+ ct12 p2, in: EG < p1 ∗ tanh(p2 ∗GL)
ct21, in: DL < ct21 ∗ALG+ ct22 p3, in: EG > p3 ∗GL + p4
ct22, in: DL < ct21 ∗ALG+ ct22 p4, in: EG > p3 ∗GL + p4
ct31, in: DL > ct31 ∗ALG+ ct32 p5, in: GL > p5 ∗NGL + p6
ct32, in: DL > ct31 ∗ALG+ ct32 p6, in: GL > p5 ∗NGL + p6
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• signal extraction to find out signals due to microcalcifications candidates,
• false positive reduction where microcalcifications are separated by calculating a
set of features2,11 from false signals.

In all these tasks, there are several parameters to be tuned; we used thirty-three of

them (listed in Table 1) for the optimization process with the GA. Most of them are

thresholds used to choose the range of feature values in the false positive reduction

phase; others are used for selecting regions of interest or extracting signals.2 Any

individuals of the population considered in GA optimization is therefore described

by a string of thirty-three values. Each parameter value (gene) can be a real or an

integer number according to the domain of the parameter itself. The purpose of the

optimization of a CAD scheme is to find out the set of parameters which yields the

highest number of true positive clusters of microcalcifications with the lowest rate

of false positive clusters (i.e., the best tradeoff between sensitivity and specificity).

This tradeoff is controlled by the design of the fitness function.

3. Genetic Algorithm

3.1. Overview

GAs are heuristic methods that operate on pieces of information like nature does

on genes in the course of evolution. Individuals are represented by a string of letters

of an alphabet and they are allowed to replace, crossover and mutate. Replacement

simply carries an individual from one iteration to the next; crossover combines

two distinct individuals to create a new one while mutation randomly changes the

value of one or more parameter values in a given individual. All individuals at one

generation are evaluated by a cost (or fitness) function. Depending on the generation

replacement mode, a subset of parents and offspring enters the next reproduction

cycle. After a number of iterations, the population consists of individuals that

are well adapted in terms of the fitness function. The basic outline of a GA is

as follows,

(1) initialize a population of individuals,

(2) evaluate all individuals of the population,

(3) generate new individuals through replacement, crossover and mutation,

(4) go back to step 2 until the termination criterion is satisfied.

The advantages in using GAs are that they require no knowledge or gradient in-

formation about the response surface, they are resistant to becoming trapped in

local optima and they can be employed for a wide variety of optimization problems.

On the other hand, GAs could have trouble in finding the exact global optimum

and they require a large number of fitness function evaluations. It is very difficult

to obtain an analytic relationship between the sensitivity of the CAD and the pa-

rameter values to be optimized. However, since a GA does not need this kind of

information, it is suitable in our optimization task.
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3.2. Experimental design

The configuration of a GA needs the investigation of several points. We have already

seen in Sec. 2 how to represent the individual of the population. In this section, we

will outline our preferences concerning the reproduction mechanisms, the choice of

the fitness function and of the termination criterion.

The initial population can be created either randomly or by perturbing an input

individual. If there is an explicit knowledge about the system being optimized, that

information can be included in the initial population. The initialization procedure

should not be critical as long as the initial population spans a wide range of variable

settings.

An evolutionary strategy needs to be adopted in order to generate individuals

for the next generation. We choose an elitist generation replacement as replacement

operator. Namely the individuals are ranked by their fitness and only the best of

them (usually 10% of the population) are taken unchanged into the next generation.

In this way, we guarantee that good individuals are not lost during a run. Other

children are coming from crossover and mutation. Crossover operator acts on pairs

of individuals (parents) to produce new strings (offspring) by exchanging segments

from the parents’ strings. The probability that the parents are recombined is a

user-controlled option (pCO) and frequently set to a high value. If the parents are

allowed to mate, the crossover operator is employed to exchange genes, otherwise,

the parents are placed into the next generation unchanged. Traditionally, the two

most common are the one-point and two-point crossover operators. In the one-point

method, a crossover point is randomly selected along the string and the genes up

to that point are swapped between the two parents. Analogously, more than one

crossover point can be selected and only the fragments between those positions

exchanged (n-point crossover). When the number of crossover points is equal to the

number of genes, we have the so-called uniform crossover. The mutation operator

simply randomly changes the value of a gene. Usually, the probability of performing

this variation (pMUT) is very low.

The aim of the cost function is to encode numerically the performance of an

individual. In our case, a pair (true positives, false positives) is mapped by this

function to a real number normalized between 0 and 1. That number represents the

excellence of a pair obtained by a particular individual (i.e., a set of parameters

in the CAD scheme). We designed the cost function as a 2D Gaussian with the

maximum in the most desired point (100% of true positives and 0 false positives).

The “hand tuned” method yields a result of 91.4% true positives and 0.4 false

positives per image (fpi).2,3 Since the goal of the optimization with the GA is to

improve this performance, we plot the fitness function with a rapid slope around

90% true positives and 0.5 fpi; in this way, the convergence towards a number of

true positives greater than 90% and a number of fpi smaller than 0.5 will be a

benefit. The fitness function used is depicted in Fig. 1.
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Fig. 1. The fitness function.

In order to end the evolution of the population, we must choose a termination

criterion. We test some of them,

(1) fixed number of generation,

(2) average of the fitness of the entire population,

(3) average of the fitness of the best individuals.

Regarding points number 2 and 3, we stop the evolution when the average has

reached a plateau. The final result of the GA optimization is the best individual of

the last iteration.

4. Implementation

4.1. Sequential algorithm

The kernel of the sequential GA described in Sec. 3 is using pseudo-code,

1. <Create first random population>

2. <Fitness evaluation>

3. WHILE <Termination condition is false> DO

4. <Replacement>

5. <Crossover>

6. <Mutation>

7. <Fitness evaluation>

8. ENDWHILE
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The GA supervises the executions of the pre-existing “basic program”2,3 which

solves the domain problem and provides fitness evaluation. We want to point out

that there are two hidden for loops. The first regards the evaluation step in code

line 2 (and 7) since the problem is solved independently for each individual of

the population. The second is inherent to the “basic program”, the detection al-

gorithm which follows the scheme described in Sec. 2 over a whole database of

mammographic images: the evaluation of one individual requires the independent

execution of the detection program for each image in the database. These loops will

be exploited in the parallel development of the algorithm.

4.2. Parallel algorithm

GAs running on parallel or distributed architectures constitute the class of Parallel

Genetic Algorithms (PGAs). PGAs can be classified in three basic groups accord-

ing to the structure of parallelization: global, coarse-grained and fine-grained.12,13

In global parallelization, any individual can mate with any other because the op-

erators and the evaluation of the individuals are explicitly parallelized often by a

“master processor” that sends individuals to other processors for the evaluation and

applies genetic operators.14 In coarse-grained PGAs, a few subpopulations are mod-

eled using a migration operator to move individuals among them. They are usually

modeled on distributed memory MIMD computers. Fine-grained parallelism runs

on massively parallel computers, SIMD and MIMD, ideally with one individual

per processor. Global parallelization is one of the most common ways to realize a

parallel GA. The purpose of this type of algorithm consists in dividing the task

of evaluating the population among several processors, following the master-slave

paradigm, because their fitnesses are independent from each other. The master pro-

gram stores the entire population and performs an iterative decomposition: on each

generation, it sends a fraction of the population (one or more individuals) to each

slave processors and waits for the results from the slaves to come back. Slaves are

self-scheduled, they ask the master for more work as their task ends. This algorithm

behaves in a synchronous manner, since the master waits to receive the fitness val-

ues for all the individuals, before proceeding into the next generation. Once all

individuals have been computed, the master performs replacement, crossover and

mutation operations to create a new generation. In this way, the GA operations

remain global and the existing design guidelines for simple (sequential) GAs are

directly applicable. In our GA, individuals are short strings of bytes and they are

not time consuming from a communication point of view. For this reason, GA can

also exploit the data parallelism of the detection algorithm. We remark that inside

each generation, an image belongs to an individual. Therefore, we can create a new

item, called chunk, which is constituted by an image identifier and by the individ-

ual the image belongs to. The master program on each generation sends a chunk,

instead of one individual, to each slave processors. In this way, the maximum idle

time of the program shrinks from the time needed for computing a whole database
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to the time needed to compute one image. The master code scheme looks like the

one of the sequential algorithm listed in the previous subsection, but, code lines 2

and 7 (the fitness evaluation step) become,

9. SEND <one chunk to each slave>

10. WHILE<the generation analysis is not complete> DO

11. RECEIVE <results from a slave>

12. IF <there are still chunks> THEN

13. SEND <one chunk to that slave>

14. ENDIF

15. ENDWHILE

and each slave performs the detection algorithm. “RECEIVE”, a blocking message-

passing routine, blocks the process until a result has arrived. An asynchronous

“SEND” immediately sends the data and computation on the master process re-

sumes as soon as data are safely on their way. In the standard master-slave scheme,

workers (slaves) are self-scheduled and the manager (the master) remains idle and

ready to satisfy requests as they arrive. Here, we use a modified version of the

manager-workers paradigm, the “working-manager” model15 in which the manager

uses its idle time to process data itself thus increasing the overall performance.

5. Results

5.1. Performance analysis

COWs are a powerful computers ensemble — small Symmetric MultiProcessor

(SMP) systems can be found within many of the modern computers — which have

replaced single, more expensive parallel machines in academic institutions and in-

dustry. The cluster we used is a loosely coupled heterogeneous computer network

consisting of six workstations (four SMPs and two single-processor machines with

a total of 10 computing nodes) connected to a LAN by a 100 Mbit Ethernet switch.

Workstations are listed below according to their performance with the sequential

algorithm,

W1) 1 Pentium III 450 MHz, 512 MB RAM;

W2) 1 SMP: 2 Pentium III 450 MHz, 256 MB RAM;

W3) 1 SMP: 2 Pentium II 450 MHz, 512 MB RAM;

W4,5) 2 SMPs: 2 Pentium II 400 MHz, 512 MB RAM;

W6) 1 Mobile Pentium II 366 MHz, 128 MB RAM.

Actually, the better performance of processor W1 compared to the W2 machine is

due to more advanced technology not to a different amount of memory.

All the code is written in C, Linux is the operating system, PVM libraries supply

the communication routines16 and gcc is the C compiler. Clearly, this is a low-cost

cluster with no-cost software.
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Since we want also to show that a nondedicated COW could improve results in

research applications, we ran our jobs while other users were using the machines for

normal activities. To get reliable performance measurements, we ran ten times in

different periods of the year and we report average values. Anyway, users’ “usual”

activity yields a roughly uniform mean workload, if considered on sliding windows

of at least one day, and there is no substantial difference among our long-time jobs

runs.

We adopt static mapping and do not introduce any degree of virtual parallelism,

by assigning one task to each processor, for a total amount of 10 processes.

Each population consists of 30 individuals and each generation requires 27 in-

dividuals to be computed. Each generation takes about 1 h of elapsed time to be

calculated on this cluster.

By means of the Linux OS times and gettimeofday routines, we get both CPU

time and wall clock time measures necessary to obtain the results.

This data parallel application has a very coarse grain structure and in addition

small amount of data are transferred when communication takes place. For this

reason, time due to communication between master and slaves is irrelevant and it

has not been considered.

We then focus our attention on relative speedup of the whole cluster with respect

to each workstation,

Si =
Ts(Wi)

Tp
, (1)

where Ts(Wi) is the time it takes to the sequential algorithm on the workstation

Wi, and Tp is the time of the parallel algorithm. The upper line in Fig. 2 is the
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“ideal” (theoretical) speedup I,

Ii =
PT

Pi
. (2)

Pi = Ts(W1)/Ts(Wi) is the power weight of Wi compared with that of the fastest

workstationW1. PT is the power weight of the whole cluster and its value is obtained

by summing over all Pi (summing twice for SMPs).

This algorithm with this ensemble of workstations gives PT = 7.57, i.e., the

power of this cluster is 7.57 times the one of processor W1.

Figure 2 shows ideal speedups Ii and speedups Si computed by measuring CPU

time and wall clock time respectively. Along the x axis, workstations (not proces-

sors!) are represented according to their increasing performance. Consequently, W2
SMP is the first instead of the single processor W1 workstation. Values for ideal

speedup range from about 5 to 12: the lower this value, the faster the workstation

is. We see that the slope of real speedup lines and the one of the ideal speedup are

much alike whether speedups arise from CPU or wall clock time measures. Anyway,

W1 and W6 values are anomalous and this becomes more evident if we compare

ideal and wall clock lines. With regard to W1, we recall that it is a single-processor

machine and it suffers less than SMPs because of the idle time. On the other side,

W6 is single-processor too, but, it lacks memory and this makes its speedup the

most different with respect to the ideal one.

The “weighted” efficiency is shown in Fig. 3,

Effi =
Si

Ii
. (3)

We observe how the intrinsically parallel nature of this problem has been success-

fully exploited by dividing original data in chunks. We obtain excellent results in
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Fig. 3. “Weighted” efficiency.
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term of efficiency if we consider CPU time. The algorithm needs synchronization

after a whole generation has been computed and this requires more than 1 h of

CPU time. In the worst case, we could imagine all workstations but the slowest one

end their calculation. The idle time would be about 50 s which is irrelevant. Exper-

iments showed a mean value of about 10 s. On the contrary, time needed to read

images is quite significant because this algorithm has low locality. Images have been

stored on a server and read via nfs. Each image (8 MB) takes about 1.5 s to be read

and for each generation, 27×40 images should be read. This sequential step causes
a loss in terms of efficiency and it becomes more visible if we consider wall clock

time. Since we choose to execute our runs inside a normal working environment, we

never had all resources reserved for this application and hence, we could not store

in memory all the images but only some of them. Nevertheless, with roughly evenly

distributed light loaded workstations, CPU efficiency remains high ranging from

about 95% until to 98% forW1 (see discussion about speedup). W6 too, the slowest

machine, keeps its efficiency high, thanks to its slowness! As expected, efficiency

goes down if we measure wall clock time mainly beacuse of swapping and the high

number of context switches.

Starting from “hand tuned” results, 87 generations were necessary for the algo-

rithm to converge and it took roughly 4 days (90 h) for each run.

5.2. Experimental results

The main goal of the present study is to show that the performance of our CAD

detection scheme improves due to the optimization based on the GA. To this end,

we depict in Fig. 4 two FROC curves: one related to the “hand tuned” method

and one for the optimized scheme. We can see that the sensitivity of the optimized

scheme is always larger than in the “hand tuned” case. The GA allows to outperform

the previous method by some percents. Even if at first sight it could seem only a
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Fig. 4. FROC of the detection methods on the 40 images (Nijmegen) database.
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slight improvement, nevertheless, this is extremely important because here it is

necessary to minimize the losses of clusters of microcalcifications, maintaining at

the same time a low rate of false alarms. Indeed, to avoid any losses of suspect

cases is a vital point in issues regarding the detection of lesions for early breast

cancer diagnosis; therefore, any small step towards a sensitivity of 100% is crucial.

The best solution achieved by the GA is an individual with a fitness value of 0.860

which corresponds to 96.2% of true clusters with 0.65 fpi. To obtain these results,

we utilize a population of 30 individuals with uniform crossover (pCO = 0.8) and

pMUT = 0.1. The convergence of the GA evolution has required the computation

of 2352 individuals (corresponding to 87 generations). Let us consider the best

individual: focusing our attention on its genes values, we can find out the differences

between them and the parameter values of the “hand tuned” results. We can notice

that these changes reduce the range of the values which identify the true signals.

In particular, regarding the coarse method, the ranges of area, GL, EG and DL are

narrower than those achieved in the “hand tuned” study (e.g., the minimum area of

signal increases from 3 to 5 pixels whereas the maximum area decreases from 30 to

22). It is possible to observe a similar effect in the fine method as shown in Fig. 5.

The curves are described by the parameters p1 and p2 (see Table 1) which separate

true signals from false detections. Signals above the curve are kept whilst signals

below it are eliminated. Also in this case, the GA is more selective in maintaining

true signals: if a signal has a given GL, the GA keeps it only if the EG is higher

with respect to the “hand tuned” case.

We can therefore summarize that the GA optimization tends to restrict the range

of features which characterize the true signals. That allows to cut the number of

false positive signals without losing too many true ones.
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Another issue investigated is how the fluctuations in the parameter values in-

fluence the performance of the CAD system. Starting from the best individual, we

vary the value of the first gene around its best value (the one discovered by the

GA), keeping fixed the other genes. The variation of the parameter ranges within

±50% its best value. We repeat this process for all the genes, each time maintaining
the other values fixed at the best solution. In this way, we can see which param-

eters affect most the fitness value. In Fig. 6, we can see an example of how the

fitness changes due to the variation of p1 and p2 separately. We notice that p1 is

a very significant parameter because the fitness goes to zero with a modification

of p1 of only ±30% around its best value. It turns out that the k value for local
thresholding (coarse method), p1, p2 and the maximum of the DL (fine method) are

the most significant parameters. A small fluctuation of their values indeed implies

a rapid fall of the fitness. On the other hand, there are some genes which do not

affect the value of the fitness. They are, in particular: the maximum of the EG,

the minimum and the maximum of the ALG, ct31 and ct32 for the coarse method

and p4, p5 and p6 for the fine method. A variation up to 50% of them around their

best value does not cause any change in the fitness value. This fact has allowed us

to perform an optimization without these parameters (keeping them fixed at their

best value). With this reduced set of parameters (25 genes instead of 33), we obtain

the same results of those cited above (fitness value of 0.860) by analyzing only 1731

individuals instead of 2352 (64 generations instead of 87). This happens because

with less parameters, the search space of the GA is reduced, resulting in a faster

convergence.

We have also tested different termination criteria. The simplest one is to perform

a prefixed number of generations. We reject it because it does not take into account

the dynamic evolution of the population. It could happen that the interruption of
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Fig. 7. Values of the fitness of the best individual, average of the best six individuals and average
of the population during the evolution of the GA.

the evolution takes place in a phase with a clear improvement of the population,

thus, precluding the possibility of further better results. We therefore focus our

attention on two criteria which consider the state of the evolution: the average

of the fitness of the best individuals and the average of the fitness of the entire

population. Their variation and the change of fitness of the best individual during

the evolution is shown in Fig. 7. We can see that the trend of the best individual

is clearly much more correlated with the value of the best 6 individuals than with

the average of the whole population. Hence, it is probable that small fluctuations

on the best individuals’ fitness would mean the achievement of the best result (in
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Fig. 8. Average performance of the CAD system on test images.
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Fig. 7, this happens after nearly 85 generations). Thus, we stop the evolution of

the GA when the fluctuation in the average of the fitness of the best six individuals

remains within a small fixed threshold.

Finally, we examine the performance of the CAD system in the presence of cases

not used in training. For this purpose, we carry out a jackknife statistical test. In

practice, we divide the 40 images into two halves: the training set and the test

set. We perform the GA optimization on the training group and then calculate an

FROC curve relative to the test images. We repeat this procedure ten times and we

average the results of the different test sets. The average performance of the CAD

scheme is shown in Fig. 8.

6. Conclusion

The optimization of our detection method, by means of a GA, has helped to improve

the performance of the CAD scheme. The optimized parameters restrict the range

of the features, which characterize the true signals, allowing the cut of the number of

false alarms without losing too many true signals. In addition, we have investigated

the influence of the fluctuations in the parameter values on the performance of

the CAD system. We have also tested the results of the detection scheme in the

presence of cases not used in training.

Another purpose of the present paper was to study the feasibility of using our

cluster of workstations to resolve this complex optimization problem instead of

moving towards a much more expensive and rarely available Massively Parallel

Processing (MPP) system. Moreover, we wanted to obtain the best results pos-

sible without disturbing the routine activities of other users. Therefore, we have

performed all of our tests during “normal” users’ activities who actually do not

run long jobs. Thus, we wrote a parallel algorithm which can exploit at the best

the independence of the problem data by subdividing the natural individuals data

domain, the whole image database in smaller chunks. Then, we have created an

image-individual pair, which breaks the task of each computer in smaller ones and

achieves an excellent workload balancing, by reducing the needs of synchronization

at the lowest level. This choice has allowed us to obtain very good results both in

terms of quality and efficiency.
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