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In this paper, we investigate the performance of a Computer Aided Diagnosis (CAD)
system for the detection of clustered microcalcifications in mammograms. Our detection
algorithm consists of the combination of two different methods. The first, based on
difference-image techniques and gaussianity statistical tests, finds out the most obvious
signals. The second, is able to discover more subtle microcalcifications by exploiting a
multiresolution analysis by means of the wavelet transform. We can separately tune the
two methods, so that each one of them is able to detect signals with similar features.
By combining signals coming out from the two parts through a logical OR operation,
we can discover microcalcifications with different characteristics. Our algorithm yields
a sensitivity of 91.4% with 0.4 false positive cluster per image on the 40 images of the
Nijmegen database.
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Microcalcifications; Wavelet; Pattern Recognition; CAD.

1. Introduction

Breast cancer is the most common form of cancer among women. The presence

of microcalcifications in breast tissues is one of the main features considered by

radiologists for its diagnosis. Unfortunately, according to statistical results, the error

in microcalcifications detection is relevant for population screening programmes.

One of the possible solutions to reduce detection errors could be to assist doctors

with a computer-aided system. The computer output is presented to radiologists as

a “second opinion” and can improve the accuracy in the detection task.1

1



August 25, 2000 18:11 WSPC/141-IJMPC 00080

2 A. Bazzani et al.

Several techniques developed for the automated detection of microcalcifications

can mainly be grouped in three different categories: Multiresolution analyses, filter-

ing methods and statistical methods. Multiresolution analyses,2–4 based on wavelet

transform of mammograms, magnify the typical microcalcifications scales. Filtering

methods remove the structured background in order to isolate microcalcifications-

like signals.5 Statistical methods are based on Bayesan decision techniques6 or

gaussianity tests with an adaptive filtering.7

By comparing the different methods, it turns out that some microcalcifications

are detected by one method but missed by the others.

In this paper, we propose an approach based on the combination of different

detection methods in order to get optimal performances: The simultaneous use of

two or more techniques might improve the results of an optimized single method.8

The basic idea of our method is to combine a multiresolution analysis based on

wavelet transform with a difference-image method and a gaussianity statistical test

and to perform a logical OR operation on the detected microcalcifications before

clustering.

In the difference-image part of the algorithm, we pre-process an image by an

adaptive noise equalization6 and we choose the Regions Of Interest (ROI’s) by

means of a gaussianity test. Gray-level local thresholding is then employed, followed

by a false-positive reduction task based on local edge-gradient analyses.

In the wavelet section, we study ROI’s by using both a multiresolution analysis

and a high local contrast filter: In this way, we select signals having small size and

high local contrast. Multiresolution is performed by means of wavelet transform. A

hard thresholding is applied to the coefficients of the smallest scale and the ROI’s

are reconstructed by using the coefficients of the first three scales. Then, a gray-

level local thresholding is realized. False positive signals are eliminated by means

of morphological operators and local edge-gradient analyses.

Finally, we clusterize the microcalcifications by performing the logical OR

operation on signals detected by the two methods.

The performance of detection scheme has been tested on 40 digitized mammo-

grams coming from Nijmegen Hospital: This database is considered as a benchmark

for Computer Aided Diagnosis (CAD) systems. The total number of clusters is 105

and there are considerable variations of visibility among them. The images have

been digitized to a pixel size of 0.1×0.1 mm2 and quantizied to 12-bits gray scales.
Recent studies9 have shown that CAD techniques originally developed on

digitized mammograms may be applied to analyze full-field digital mammograms.

The detection parameters could be modified, due to the properties of digital

detector.

2. Methods

2.1. Detection scheme

Microcalcifications are very small spots which appear brighter than the surrounding

normal tissue. Typically, they are between 0.1 mm and 1 mm in size and are of
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Fig. 1. Detection scheme.

particular clinical significance when found in clusters of five or more in a 1 cm2

area. Most of the clusters consist of at least one evident microcalcification and

other more hidden signals. In the Nijmegen database, the diameter size of clusters

ranges from 2 mm to 50 mm.

Our approach includes two different methods: The first one (coarse) is able to

detect the most obvious signals and uses difference-image techniques and gaussian-

ity tests, while the second one (fine), based on multiresolution analyses, discovers

more subtle microcalcifications.

The detection scheme of the algorithm is shown in Fig. 1. First, the digitized

image is segmented to isolate breast tissues from image background. In this way, we

reduce both the processing time and memory requirements, since we analyze only

areas which contain useful information for the detection. The segmented image is

then passed to the two signal-extraction methods described in the following subsec-

tions. Signals coming out from these methods are combined through a logical OR

operation and then clusterized to give the final result.

2.2. Coarse method

In this part of the algorithm, we remove structured image background by means of

a difference-image technique. The scheme of the coarse method is shown in Fig. 2.

First of all, we perform an iso-precision noise equalization.6 In this way, we optimize

the choice of gray-level thresholding parameter k as shown in Fig. 2.

The equalized image is passed through two different filters: A 3 × 3 match-
filter that produces a signal-enhanced image and a 7× 7 box-rim filter that gives a
signal-suppressed image.
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Fig. 2. Scheme of the coarse method.

The match-filter approximates the mean contrast variations of a typical mi-

crocalcification and enhances signals having similar size and local contrast. The

box-rim filter suppresses high-frequency noise maintaining the low-frequency struc-

tured background. The box-rim filter averages all the n× n neighbor pixels except
those inside a kernel in the middle of the window filter: We use a 7×7 window with
a 3× 3 null kernel inside.
By subtracting the suppressed image from the enhanced one, we obtain a

difference-image, which contains noise and signals resembling microcalcifications.

According to experimental evidences, we assume that the remaining noise is gaus-

sian, since we have reduced the structured noise in the previous steps. We then

employ a gaussianity test on the difference image in order to choose ROI’s that

include interesting signals. This test is based on the first three moments I1, I2, and

I3
7 of the gray-level distribution in a 51×51 pixels window in difference image. For
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a gaussian distribution with mean µ and variance σ2, the moments I1, I2 and I3
converge to:

I1 → µ
I2 → σ2 + µ2

I3 → µ3 + 3σ2µ
.

Consequently, we have: h = I3 − 3I1(I2 − I21 )− I31 = 0.
Since the difference-image contains only gaussian noise and signals with a high

contrast, we should have a deviation from gaussianity in regions including micro-

calcifications, hence, a high value of h is supposed to appear in these zones. We

measure h in 80 windows containing microcalcifications and in 80 windows without

them. In Fig. 3, distributions of h values are depicted. We fix a threshold in order

to find out “suspect” ROI’s and then we perform the gray-level thresholding only

in ROI’s having value of h greater than the threshold. With a threshold equal to

ht = 0.9, we reject 80% of the considered ROI’s losing only 2% of ROI’s containing

microcalcifications.

The central pixel of the considered 51 × 51 window of the difference-image is
retained only if its gray level is greater than µ + kσ, where k is the parameter

which gives the variation on the coarse method sensitivity. Connected pixels are

then grouped into a single signal.10

The next step is a false-positive reduction (fpr) phase based on a local edge-

gradient analysis.11 We consider five features (area, average pixel value, edge
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Fig. 3. Top: Complete histograms. Bottom: Zoom of the histograms in the zone where threshold
is applied (ht = 0.9). Left: Histogram of h values in windows containing microcalcifications.
Right: Histogram of h values in windows without microcalcifications.
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gradient, degree of linearity, and average local gradient) to separate microcalcifi-

cations from false signals.

In the Nijmegen database, we select signals having an area ranging from a couple

of pixels to some dozen of pixels. Features such as average pixel value and edge-

gradient help to remove signals that look like subtle or blurred microcalcifications

and signals due to artifacts. By using a linear pattern analysis (degree of linearity

and average local gradient), we eliminate signals caused by bright linear patterns.

Signals surviving the fpr stage will combine with others coming from the fine

method described in the next subsection.

2.3. Fine method

In this part of the detection scheme, we try to discover more subtle microcalcifica-

tions by means of multiresolution analyses based on the wavelet transform. Figure 4

depicted the scheme of the fine algorithm.

Microcalcifications are characterized by well-defined range size and high local

contrast, so, we find out signals having these features. We split the algorithm into

two independent sections. The first one detects signals having size smaller than

1 mm by means of a multiresolution analysis. In the second section, signals having

a high local contrast are enhanced by using a difference image technique. We then

perform an AND logical operation in order to find out signals having both the

Segmented image (ROI)

analysis
Multiresolution

thresholding
Local 

thresholding
Local

contrast filter
High - local

AND

False positive
reduction

Fine method signals

Fig. 4. Scheme of the fine method.
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features we are looking for. The AND operation is necessary to eliminate spurious

signals introduced by multiresolution analysis due to the nonuniform structure of

breast tissue.

The scheme of multiresolution analysis is shown in Fig. 5. We want to stress

that we perform a hard thresholding on scale 112: To reconstruct the image, we

maintain only coefficients having value greater than 1.5σ (with σ standard devia-

tion of the coefficients distribution). Scale 1 includes both high-frequency noise and

useful information about microcalcifications; by using the hard thresholding, we

try to reduce noise effects and, at the same time, to keep information about micro-

calcifications. We utilize a Least Asymmetric Daubechies’ (LAD8) mother wavelet

for the multiresolution analysis. To extract interesting signals, we perform a local

thresholding in 40 × 40 pixel size windows. Assuming a gaussian distribution for
the noise, we fit with a parabola the gray level histogram of the window in semi-

logarithmic scale (Fig. 6). Then, we retain pixels having a gray level greater than

the intersection of parabola with x axis. In order to eliminate spurious signals, we

accomplish a morphological opening operation on the image.

The second section of fine method is based on a difference-image technique

similar to the one described in coarse method. We subtract a suppressed image

obtained by a 9× 9 moving average filter from an enhanced image coming from a
3×3 match-filter. We carry out the same local thresholding on the difference image
followed by the morphological opening. In Fig. 6, we show the histogram of windows

of the difference image where the gray level local thresholding is performed. After

reconstruction

(scale 1:3)

To local thresholding

Segmented image (ROI)

Wavelet transform

Hard thresholding
(scale 1)

Wavelet

Fig. 5. Scheme of the multiresolution analysis.



August 25, 2000 18:11 WSPC/141-IJMPC 00080

8 A. Bazzani et al.

0

1

2

3

4

5

6

7

-200 -150 -100 -50 0 50 100 150 200 250 300

L
og

ar
ith

m
 o

f 
th

e 
oc

cu
re

nc
e

Gray level value

(a)

0

1

2

3

4

5

6

7

-200 -150 -100 -50 0 50 100 150 200 250 300

L
og

ar
ith

m
 o

f 
th

e 
oc

cu
re

nc
e

Gray level value

(b)

Fig. 6. Histogram of windows of the difference image where gray level local thresholding is
performed. (a) Window containing microcalcifications, (b) Window without interesting signals.

that, a logical AND operation is accomplished on signals extracted by the two

sections of fine method.

To split false signals from microcalcifications, a fpr phase similar to the one

seen in coarse method is performed. In Fig. 7, we show the distribution of two fpr

features (edge gradient vesus gray level) and the chosen curve which separates false

signals from microcalcifications; this curve f has the form: f(x) = p1 tanh(p2x).

Features values are calculated on the original digitized image. Finally, microcalci-

fications which have passed the fpr step are combined with others coming from

coarse method through a logical OR operator.

2.4. Clustering

There are different definitions of clusters and several strategies in the estimation of

true positive and false positive rates.13 We define cluster an ensemble of three or



August 25, 2000 18:11 WSPC/141-IJMPC 00080

Automatic Detection of Clustered Microcalcifications 9

Fig. 7. Distribution of edge gradient versus gray level for true (plus signs) and false (diamonds)
signals.

more signals having each one at least another signal in a 5 mm neighbor. Following

this statement, we clusterize all microcalcifications coming from the OR operation

and calculate center and radius of each cluster. The center of cluster is computed

as the centroid of signals belonging to it, while its radius is the maximum distance

between signals and the center of cluster. In order to classify a cluster as true or

false, we adopt the following criterion: A cluster is defined true if its center falls

inside the suspect area marked by radiologists.

3. Results

The goal of this paper is to show the combination of different methods allows the

detection of microcalcifications that could have been missed by using one detection

technique alone. In Fig. 8, we can see an example which explains this fact. A cluster

containing eight microcalcifications is depicted (labeled from 1 to 8). The most

obvious signals (3, 4, and 6) are detected by both methods. These signals have high

local contrast and high Signal to Noise Ratio (SNR). We consider as noise every

structure of the image having a size greater than some dozen of pixels (maximum

microcalcifications area). It is important to note that with the term local contrast

we mean a contrast computed on a small neighbor (a couple of pixels). We estimate

SNR as the ratio between the signal gray-level and the average gray-level computed

in a neighbor of 50× 50 pixels. We are searching for signals having small size and
high local contrast.
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Fig. 8. Cluster containing eight microcalcifications.

In the example depicted in Fig. 8, we can see that the fine method can discover

signals with low SNR, while the coarse method misses them: The reason is that

the wavelet transform can enhance in better way signals similar in size to microcal-

cifications. Microcalcifications 1, 2, and 5 are detected by the coarse method but

missed by the fine one. They are characterized by high SNR and low local contrast.

The fine method is not able to find out them because their local contrast is not very

high and they are confused with spurious signals which have the same size of the

microcalcifications. Signals 7 and 8 are discovered by the fine method but missed

by the coarse one because they have a low SNR (i.e., these signals are character-

ized by a high local contrast, but at the same time they are surrounded by bright

structured background). In this example, the simultaneous use of the two methods

permit the detection of all microcalcifications of the cluster. An example of the per-

formance of our detection algorithm is shown in Fig. 9 for some sets of parameters.

Three Free Response Operating Characteristics (FROC) curves are depicted: One

related to the combined method, one for the coarse method and one for the fine

one. The curves are obtained by varying the following parameters: k in the coarse

and in the combined method curves, p1 and p2 in the fine one. There is a clear

improvement due to the simultaneous use of the two methods. We have at least a

sensitivity over 90% with a false positive alarm under 0.5 false per image (actually

91.4% with 0.4 false per image). These results are comparable to others obtained

with the same database.6,14–16

The development of a CAD system consists of two steps. The first one concerns

with parameters optimization: In order to test different sets of parameters, several

hundreds of interactive runs on the whole database are needed. Each run takes
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Fig. 9. FROC of our detection system on the Nijmegen database.

about 80 minutes (elapsed time), with no relevant external load, and 20 MB RAM.

The second phase takes place when parameters have been tuned: The system is

ready for the detection on a new image. The analysis of one single image requires

small computational resources: About 20 MB RAM and 2 min (elapsed time). The

computer used is an entry-level PC mounting a Pentium II 400 MHz processor.

The code has been developed by using the C language and no-cost, free-source

software: An X-based GUI, the gcc compiler and Linux OS.

4. Conclusion

In this paper, we have investigated the combination of different methods in the

detection of clustered microcalcifications in digital mammograms. The first method

is based on difference-image techniques and statistical tests while the second one

employs a multiresolution analysis of the digital image. In this way, we can tune

each part of the detection scheme so that each method is able to discover microcal-

cifications with similar features. By combining signals detected through a logical

OR operation, we can therefore find out signals with different characteristics.

Results using the Nijmegen database have shown that our approach can lead to

good performances.
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